Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

Til dokument

Sammendrag

The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth’s surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1–67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.

Sammendrag

No abstract has been registered

Til dokument

Sammendrag

Chafer grubs and leatherjackets can cause severe damages to Scandinavian Golf Courses – mainly in the southern areas. Damages from chafer grubs are occasional, damages from leatherjackets tend to be increasing. Restrictions on insecticides have necessitated the use of alternative control methods. Many experiments with microbiological agents like entomopathogenic nematodes (EPN) and strains of Bacillus thuringiensis have been conducted, but monitoring and warning, and methods for application, spraying equipment and technique, formulation of and effective species of microbiological agents must be improved. Good communication with the golfers is essential, as more damages from insect pests will occur now and in the future, and alternative methods are often more expensive and less effective than the synthetic insecticides. Course managers and greenkeepers have to become experts in the use of microbiological control.

Til dokument

Sammendrag

Plant selection for rain gardens along streets and roads in cold climates can be complicated, as the plants are subjected to combined stresses including periodic inundation, de-icing salts, road dust, splashes of water from the road, freezing and thawing of soil, and periods with ice cover during the winter. The purpose of this study was to identify species suited to grow in these conditions and determine their optimal placement within roadside rain gardens. Thirty-one herbaceous perennial species and cultivars were planted in real-scale rain gardens in a street in Drammen (Norway) with supplemental irrigation, and their progress was recorded during the following three growing seasons. The study highlights considerable differences between species’ adaptation to roadside rain gardens in cold climates, especially closest to the road. Some candidate species/cultivars had a high survival rate in all rain garden positions and were developed well. These were: Amsonia tabernaemontana, Baptisia australis, Calamagrostis × acutiflora ‘Overdam’, Hemerocallis ‘Camden Gold Dollar’, Hemerocallis ‘Sovereign’, Hemerocallis lilioasphodelus, Hosta ‘Sum & Substance’, Iris pseudacorus and Liatris spicata ‘Floristan Weiss’. Other species/cultivars appeared to adapt only to certain parts of the rain garden or had medium tolerance. These were: Calamagrostis brachytricha, Carex muskingumensis, Eurybia × herveyi ‘Twilight’, Hakonechloa macra, Hosta ‘Francee’, Hosta ‘Striptease’, Liatris spicata ‘Alba’, Lythrum salicaria ‘Ziegeunerblut’, Molinia caerulea ‘Moorhexe’, Molinia caerulea ‘Overdam’, and Sesleria autumnalis. Species/cultivars that showed high mortality and poor development at all rain garden positions should be avoided in roadside cold climate rain gardens. These include Amsonia orientalis, Aster incisus ‘Madiva’, Astilbe chinensis var. tacquettii ‘Purpurlanze’, Chelone obliqua, Dryopteris filix-mas, Eurybia divaricata, Geranium ‘Rozanne’, Helenium ‘Pumilum Magnificum’, Luzula sylvatica, Polygonatum multiflorum and Veronicastrum virginicum ‘Apollo’. The study also found considerable differences between cultivars within the same species, especially for Hosta cvv. and Liatris spicata. Further investigations are needed to identify the cultivars with the best adaption to roadside rain gardens in cold climates.

Til dokument

Sammendrag

Roadsides, in particular those being species-rich and of conservation value, are considered to improve landscape permeability by providing corridors among habitat patches and by facilitating species' dispersal. However, little is known about the potential connectivity offered by such high-value roadsides. Using circuit theory, we modelled connectivity provided by high-value roadsides in landscapes with low or high permeability in south-central Sweden, with ‘permeability’ being measured by the area of semi-natural grasslands. We modelled structural connectivity and, for habitat generalists and specialists, potential functional connectivity focusing on butterflies. We further assessed in which landscapes grassland connectivity is best enhanced through measures for expanding the area of high-value roadsides. Structural connectivity provided by high-value roadsides resulted in similar patterns to those of a functional approach, in which we modelled habitat generalists. In landscapes with low permeability, all target species showed higher movements within compared to between grasslands using high-value roadsides. In landscapes with high permeability, grassland generalists and specialists showed the same patterns, whereas for habitat generalists, connectivity provided by high-value roadsides and grasslands was similar. Increasing the ratio of high-value roadsides can thus enhance structural and functional connectivity in landscapes with low permeability. In contrast, in landscapes with high permeability, roadsides only supported movement of specialised species. Continuous segments of high-value roadsides are most efficient to increase connectivity for specialists, whereas generalists can utilize also short segments of high-value roadsides acting as stepping-stones. Thus, land management should focus on the preservation and restoration of existing semi-natural grasslands. Management for enhancing grassland connectivity through high-value roadsides should aim at maintaining and creating high-value roadside vegetation, preferably in long continuous segments, especially in landscapes with low permeability.