Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Abstract
Minimising outputs of waste and pollution by recycling and efficient utilisation of renewable resources is of common interest for organic agriculture and the concepts of circular and bioeconomy. However, in practice, many efforts to increase recycling of various biological materials in organic agriculture are hampered because standards for certified organic production and processing tend to prefer natural products while avoiding processing and especially chemical processes. This creates several dilemmas and weakens the position of organic agriculture as a spear head in the development of a better resource utilisation which will reduce environmental impacts from food production. Based on practical examples derived from projects aimed at better utilisation of residual materials in various food chains, this paper presents some of these dilemmas. Our aim is to initiate a discussion among organic agriculture stakeholders about the regulations for organic production, how they restrict recycling and a better utilisation of valuable resources, and how this can be overcome.
Abstract
No abstract has been registered
Authors
Xiao Huang Chaoqing Yu Tongbi Tu Shaoqiang Ni ShengChao Qiao Jim W Hall Mats Höglind Hanna Marika SilvennoinenAbstract
In the past decade, China imported massive quantities of soybean from the international market to meet its increasing domestic demand for protein[1]. However, China’s soybean imports from US decreased from 32.86 Mt (Million tons, 34% of the total 95.54 Mt) in 2017 to 16.64 Mt (19% of the total 88.03 Mt) in 2018[2] due to the China-US trade war. To reduce China’s reliance on imports, the Chinese government has been making policy incentive, e.g. higher subsidies, to encourage farmers for soybean cultivation. Traditionally Northeast China is the key production area for soybean. Soybean cultivation is tightly linked to the regional climate and environment. On the one hand, the local soybean growth is vulnerable[3] to the frequent meteorological hazards (e.g. droughts, floods) in the Northeast China[4]. The meteorological risks for soybean production in this area still remain unknown. On the other hand, albeit with relatively high production cost[5] and low water use efficiency[6], the local soybean cultivation is expected to effectively improve the nitrogen use efficiency and therefore alleviate the growing environment pollutions in this region[7]. Yet so far there are few quantitative research being reported on this environmental issue. Our research aims to explore both the meteorological risks and environmental costs of the policy-driven soybean expansion. We have developed a new version of the soybean growth algorithms within the DNDC (DeNitrification-DeComposition) model including nitrogen biogeochemical processes and performed regional simulations for soybean-related cropping systems in Northeast China. We will present the following results by combining model outputs and observations: (i) potential yield and the meteorological risks of soybean cultivation; (ii) fertilizer reduction in different crop rotation systems and the corresponding benefits to water ecosystem; and (iii) consequences of different policy scenarios (e.g. change in subsidy, GMO permission) to soybean production and environment.
Abstract
Pastures are botanically diverse and difficult to characterize. Digital modeling of pasture biomass and quality by non-destructive methods can provide highly valuable support for decision-making. This study aimed to evaluate aerial and on-ground methods to characterize grass ley fields, estimating plant height, biomass and volume, using digital grass models. Two fields were sampled, one timothy-dominant and the other ryegrass-dominant. Both sensing systems allowed estimation of biomass, volume and plant height, which were compared with ground truth, also taking into consideration basic economical aspects. To obtain ground-truth data for validation, 10 plots of 1 m2 were manually and destructively sampled on each field. The studied systems differed in data resolution, thus in estimation capability. There was a reasonably good agreement between the UAV-based, the RGB-D-based estimates and the manual height measurements on both fields. RGB-D-based estimation correlated well with ground truth of plant height (R 2 > 0.80) for both fields, and with dry biomass (R 2 = 0.88), only for the timothy field. RGB-D-based estimation of plant volume for ryegrass showed a high agreement (R 2 = 0.87). The UAV-based system showed a weaker estimation capability for plant height and dry biomass (R 2 < 0.6). UAV-systems are more affordable, easier to operate and can cover a larger surface. On-ground techniques with RGB-D cameras can produce highly detailed models, but with more variable results than UAV-based models. On-ground RGB-D data can be effectively analysed with open source software, which is a cost reduction advantage, compared with aerial image analysis. Since the resolution for agricultural operations does not need fine identification the end-details of the grass plants, the use of aerial platforms could result a better option in grasslands.
Abstract
This study aimed at identifying optimal sward conditions for successful establishment of red clover (Trifolium pratense L.) through sod-seeding two typical Norwegian grassland systems dominated by timothy (Phleum pratense L.) and perennial ryegrass (Lolium perenne L.), respectively. A total of four sod-seeding trials were implemented, two in late summer (SUM) and two in spring (SPR), one for each sward type and time point for reseeding. The sward coverage status was the basis for threshold definition, and image analysis techniques were used for objective coverage estimation of living plants, dead material and bare soil. Plots with different coverage levels (0–100% of the soil covered by vegetation) were created by spraying a broad-spectrum herbicide (glyphosate) in a spot-wise pattern, mimicking common types of patchiness caused by stressful weather events, e.g., frost or mechanical damage from wheels or hoofs. Seed germination and emergence started similarly in all coverage ranges. However, as time progressed clover seedlings started to die at a coverage dependent rate, and at the final harvest red clover dry matter (RCDM) was the lowest on plots with the highest pre-seeding coverage level. Dose-response curves explained these relationships and allowed estimating the effective-coverage ( ECov80 ), being the initial sward coverage at which 80% of all established red clover plants contributed significantly to the total biomass. Above 2500 kg ha−1 RCDM were produced on timothy ( ECov80 : 15–50%) in SUM, while less than 1000 kg ha−1 RCDM were produced on ryegrass ( ECov80:±10% ), indicating better conditions for clover establishment in timothy compared with ryegrass. In SPR, an ECov80 : 10–15% allowed a good red clover estabishment in ryegrass at cut 3, while RCDM was important and significant in timothy even between ECov80 20 and 60%, at cut 2 and cut 3, respectively. These thresholds for sod-seeding mark the challenges to introduce red clover in dense swards and could be applicable for grassland renovation with other desirable legume and grasses species. Our findings represent particular soil and climatic characteristics of the study site, thus should be taken with caution. Due to the lack of experimentally and sytematically determined thresholds for reseeding, future studies could benefit from our experimental approach, as a base for more complex, multi-site and multi-seasonal investigations, and farmers could use these thresholds for decision making on successful grassland renovation, to avoid wasting seed resources and yield loses.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
An annual sheep production system in Norway incorporates grazing natural pastures for five months. Yet no measurements of enteric methane emissions from grazing sheep have been performed under Norwegian conditions. A pilot study was conducted with 12 Norwegian White ewes to test the feasibility of using the sulphur hexafluoride (SF6) tracer technique under Norwegian conditions. The ewes were split onto one of two pastures, mixed grass (Bromus inermis dominated, Poa pratensis, Festuca pratensis) or white clover (Trifolium repens). After five days adaptation to pastures, breathe samples were collected into evacuated one L PVC canisters over three consecutive days where capillary tubes (0.38 to 0.42 mL/min initial flow) restricted flow. Gas samples were analysed by gas chromatography. Feed intakes were not recorded. Average live weights were 64 kg and 66 kg for ewes on grass and clover pastures, respectively. Methane emissions were 23.9 g/d from sheep on mixed grass and 28.2 g/d for sheep on white clover. Methane emissions were not correlated (p=0.33) to ewe live weight. One explanation for the 15% difference in methane emission could be differences in feed intake. The few days of sample collection could also explain some of the observed difference since the technique is recommended to be used over five days to reduce errors in observations. This pilot study shows that using the SF6-technique is a feasible method for future research. More experiments measuring enteric methane emission over a longer period from grazing sheep and cattle under Norwegian conditions are planned for the future.
Abstract
No abstract has been registered
Abstract
Nitrous oxide (N2O) emissions from cultivated soils correlate positively with the amount of N-fertilizer applied, but a large proportion of the annual N2O emission occurs outside the cropping season, potentially blurring this correlation. We measured the effect of split-N application (total N addition varying from 0 to 220 kg N ha−1) on N2O emissions in a spring wheat plot trial in SE Norway from the time of split-N application until harvest, and during the following winter and spring thaw period. N2O emissions were largest in the two highest N-levels, whereas yield-scaled emission (N2O intensity) was highest in the 0 N treatment. Nitrogen yield increased by 23% when adding 80 kg N ha−1 compared to adding 40 kg N ha−1 as split application, while corresponding N2O emissions were reduced by 16%. No differences in measured emissions between the N-fertilization levels were observed during the winter period or during spring thaw. Measurements of soil air composition below the snow pack revealed that N2O production continued throughout winter as the concentration in the soil air increased from 0.37 to 30.0 µL L−1 N2O over the 3 months period with continuous snow cover. However, only 7–28% of the N2O emitted during spring thaw could be ascribed to accumulated N2O, indicating de novo production of N2O in the thawing soil. The direct effect of split-N fertilizer rate on N2O emissions in sub-boreal cereal cropping was limited to the first 15–21 days after N-addition.