Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Kim Viggo Paulsen Weiby Sophie Julie Krizsan Margrete Eknæs Angela Dagmar Schwarm Anne C Whist Ingunn Schei Håvard Steinshamn Peter Lund K.A. Beauchemin Ingjerd DønnemAbstract
No abstract has been registered
Authors
Håvard SteinshamnAbstract
No abstract has been registered
Authors
Lucius Tamm Barbara Thuerig Stoilko Apostolov Hugh Blogg Esmeralda Borgo Paola Elisa Corneo Susanne Fittje Michelangelo de Palma Adam Donko Catherine Experton Évelyne Alcázar Marin Ángela Morell Pérez Ilaria Pertot Anton Rasmussen Håvard Steinshamn Airi Vetemaa Helga Willer Joëlle Herforth-RahméAbstract
The reduction of copper-based plant-protection products with the final aim of phasing out has a high priority in European policy, as well as in organic agriculture. Our survey aims at providing an overview of the current use of these products in European organic agriculture and the need for alternatives to allow policymakers to develop strategies for a complete phasing out. Due to a lack of centralized databases on pesticide use, our survey combines expert knowledge on permitted and real copper use per crop and country, with statistics on organic area. In the 12 surveyed countries (Belgium, Bulgaria, Denmark, Estonia, France, Germany, Hungary, Italy, Norway, Spain, Switzerland, and the UK), we calculated that approximately 3258 t copper metal per year is consumed by organic agriculture, equaling to 53% of the permitted annual dosage. This amount is split between olives (1263 t y−1, 39%), grapevine (990 t y−1, 30%), and almonds (317 t y−1, 10%), followed by other crops with much smaller annual uses (<80 t y−1). In 56% of the allowed cases (countries × crops), farmers use less than half of the allowed amount, and in 27%, they use less than a quarter. At the time being, completely abandoning copper fungicides would lead to high yield losses in many crops. To successfully reduce or avoid copper use, all preventive strategies have to be fully implemented, breeding programs need to be intensified, and several affordable alternative products need to be brought to the market.
Authors
Muhammad Naseer Tomas Persson Isabela Righini Cecilia Stanghellini Henk Maessen Peter Ruoff Michel VerheulAbstract
CONTEXT For high latitude countries like Norway, one of the biggest challenges associated with greenhouse production is the limited availability of natural light and heat, particularly in winters. This can be addressed by changes in greenhouse design elements including energy saving equipment and supplemental lighting, which, however, also can have a huge impact on investments, economic performance, resources used and environmental consequences of the production. OBJECTIVE The study aimed at identifying a greenhouse design from a number of feasible designs that generated highest Net Financial Return (NFR) and lowest fossil fuel use for extended seasonal (20th January to 20th November) and year-round tomato production in Norway using different capacities of supplemental light sources as High Pressure Sodium (HPS) and Light Emitting Diodes (LED), heating from fossil fuel and electricity sources and thermal screens by implementing a recently developed model for greenhouse climate, tomato growth and economic performance. METHODS The model was first validated against indoor climate and tomato yield data from two commercial greenhouses and then applied to predict the NFR and fossil fuel use for four locations: Kise in eastern Norway, Mære in mid Norway, Orre in southwestern Norway and Tromsø in northern Norway. The CO2 emissions for natural gas used for heating the greenhouse and electricity used for lighting were calculated per year, unit fruit yield and per unit of cultivated area. A local sensitivity analysis (LSA) and a global sensitivity analysis (GSA) were performed by simultaneously varying the energy and tomato prices. RESULTS AND CONCLUSIONS Across designs and locations, the highest NFR for both production cycles was observed in Orre (116.9 NOK m−2 for extended season and 268.5 NOK m−2 for year-round production). Fossil fuel was reduced significantly when greenhouse design included a heat pump and when extended season production was replaced by a year-round production. SIGNIFICANCE The results show that the model is useful in designing greenhouses for improved economic performance and reduced CO2 emissions from fossil fuel use under different climate conditions in high latitude countries. The study aims at contributing to research on greenhouse vegetable production by studying the effects of various designs elements and artificial lighting and is useful for local tomato growers who either plan to build new greenhouses or adapt existing ones and in policy formulation regarding incentivizing certain greenhouse technologies with an environmental consideration or with a focus on increasing local tomato production.
Abstract
The availability of fresh vegetables grown in greenhouses under controlled conditions throughout the year has given rise to concerns about their impact on the environment. In high latitude countries such as Norway, greenhouse vegetable production requires large amounts of energy for heat and light, especially during the winter. The use of renewable energy such as hydroelectricity and its effect on the environment has not been well documented. Neither has the effect of different production strategies on the environment been studied to a large extent. We conducted a life cycle assessment (LCA) of greenhouse tomato production for mid-March to mid-October (seasonal production), 20th January to 20th November (extended seasonal) production, and year-round production including the processes from raw material extraction to farm gate. Three production seasons and six greenhouse designs were included, at one location in southwestern and one in northern Norway. The SimaPro software was used to calculate the environmental impact. Across the three production seasons, the lowest global warming (GW) potential (600 g CO2-eq per 1 kg tomatoes) was observed during year-round production in southwestern Norway for the design NDSFMLLED + LED, while the highest GW potential (3100 g CO2-eq per 1 kg tomatoes) was observed during seasonal production in northern Norway for the design NS. The choice of artificial lighting (HPS (High Pressure Sodium) or LED (Light Emitting Diodes)), heating system and the production season was found to have had a considerable effect on the environmental impact. Moreover, there was a significant reduction in most of the impact categories including GW potential, terrestrial acidification, and fossil resource scarcity from seasonal to year-round production. Overall, year-round production in southwestern Norway had the lowest environmental impact of the evaluated production types. Heating of the greenhouse using natural gas and electricity was the biggest contributor to most of the impact categories. The use of an electric heat pump and LED lights during extended seasonal and year-round production both decreased the environmental impact. However, while replacing natural gas with electricity resulted in decreased GW potential, it increased the ecotoxicity potential.
Abstract
No abstract has been registered
Abstract
No abstract has been registered