Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Authors
Venche Talgø G. Chastagner I. M. Thomsen T. Cech K. Riley K. Lange Sonja Klemsdal Arne StensvandAbstract
Current season needle necrosis (CSNN) has been a serious foliage disorder on true fir Christmas trees and bough material in Europe and North America for more than 25 y. Approximately 2-4 weeks after bud break, needles develop chlorotic spots or bands that later turn necrotic. The symptoms have been observed on noble fir (Abies procera), Nordmann fir (A. nordmanniana) and grand fir (A. grandis) on both continents. CSNN was reported as a physiological disorder with unknown aetiology from USA, Denmark, and Ireland, but was associated with the fungus Kabatina abietis in Germany, Austria and Norway. In 2007, a fungus that morphologically resembled K. abietis was isolated from symptomatic needle samples from Nordmann fir from Austria, Denmark, Germany, Norway, and USA. Sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA of these cultures, plus a K. abietis reference culture from Germany (CBS 248.93), resulted in Hormonema dematioides, the imperfect stage of Sydowia polyspora, and thus the taxonomy is further discussed. Inoculation tests on Nordmann fir seedlings and transplants with isolates of S. polyspora from all five countries resulted in the development of CSNN symptoms. In 2009, S. polyspora was also isolated from symptomatic needles from Nordmann fir collected in Slovakia. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Abstract
The effect of potential resistance inducing chemicals on disease development of Fusarium head blight was studied in winter wheat (Triticum aestivum L.). As a pre-screening test, the effect of different treatments on development of Microdochium majus (syn. Microdochium nivale var. majus) was studied in detached leaves. Based on these tests, DL-3-aminobutyric acid, Bion (benzo-(1,2,3) thiadiazole-7-carbothioic acid S-methyl ester), and a foliar fertilizer containing potassium phosphite were selected for further studies. Greenhouse-grown winter wheat was sprayed with aqueous solutions of the potential resistance inducers 7 days prior to Fusarium culmorum point inoculation of the heads. Disease development was registered as number of bleached spikelets per inoculated spike. Spraying plants with the foliar fertilizer reduced the disease severity of F. culmorum by up to 40%. A reduced disease development of M. majus was also observed in detached leaves pre-treated with the foliar fertilizer. When the foliar fertilizer was added to the growth medium, a reduced in vitro growth of M. majus and F. culmorum was observed, indicating that the effect on disease development is at least partly due to a fungistatic effect. No significant reduction in disease development was observed in wheat pre-treated with DL-3-aminobutyric acid or Bion, although these compounds tended to reduce disease development, especially when applied in combination with other potential resistance inducers. We conclude that spraying winter wheat with a solution containing potassium phosphite can reduce development of M. majus and F. culmorum.
Authors
Filipa Cox Nadia Barsoum Martin I. Bidartondo Isabella Børja Erik Lilleskov Lars Ola Nilsson Pasi Rautio Kath Tubby Lars VesterdalAbstract
No abstract has been registered
Abstract
Plants use an array of responses to pathogenic infection. Understanding of the underlying defence mechanisms may lead to new strategies for reducing the damage. Our objective here was to study histological and cytological responses in Norway spruce of different ages (from seedlings to mature trees) to infection with several pathogenic organisms (Pythium dimorphum, Ceratocystis polonica and Heterobasidion annosum) and compared them to effects of mechanical wounding. To visualize the reaction on infection/wounding we used different histological staining techniques followed by laser confocal microscopy and TEM. Primary roots of Norway spruce seedlings were infected with P. dimorphum, while mature trees (about 30 years old) were infected with C. polonica, H. annosum and wounded. In seedling roots the hyphae of P. dimorphum penetrated the tissue rapidly and colonized the root within 24 hours. In the infected tissue the lignin concentration doubled within 6 days compared to non infected roots. General response to infection by C. polonica and H. annosum in mature trees was the production of lignosuberised wound periderm, accumulation of polyphenolic aggregates in living parenchyma cells in the phloem and development of traumatic resin ducts in the xylem. Upon wounding, we observed a similar, but less intense response. In conclusion, although we tested fungi belonging to different taxonomical and ecological groups, the responses were similar, differing in intensity and timing of the defence response mainly. The response seems to be similar but dependent on the degree of susceptibility in the individual trees and clones.
Abstract
No abstract has been registered
Authors
Roman Gebauer Josef Urban Isabella Børja Vladimir Gryc H Vavrcik Daniel Volarik Petra RychteckaAbstract
The drought stress presents a significant threat for the forest ecosystems. The climate change brings some extreme climatic conditions including longer and more common periods of the drought into the still more forest stands. Current forest management and consecutively wood processing industry in the Czech Republic is nowadays dependent mostly on the Norway spruce. In the same hand, Norway spruce is probably the most threatened tree species by the climate change. Therefore there is a demand for the suitable methodology to monitor the direct effect of the drought on the trees. Presented publication puts together different methods of the evaluation of the water stress and tries to assess their value for the study of the water stress. Of course, there are dozen of the methods to study the water stress. In this handbook we skipped the difficult and expensive techniques and focused rather on the simple methods, suitable for the field use. Methodology begins with the description of the meteorological measurements with current widely available instrumental techniques (i.e. measurements of the intensity of global radiation, air temperature and humidity, wind speed and precipitation) and continues with the monitoring of the soil water content and soil water potential. Then there is a focus on the direct effect of the water stress on the plant. We began with the plant root system since we believed that the fine roots were the most susceptible part of the tree. The focus was on their morphology, anatomy and biological activity. In the aboveground part of the tree we focused on the development of the hydraulic architecture of the tree on the microscopic level. This theoretical analysis was validated by the in-situ measurements of the sap flow. Direct and immediate effect of the water stress on the plant water status is described in the means of the plant water potential. Similarly to the hydraulic architecture we dealt with both the xylogenesis (on the cellular level) and the stem increment measured (on the tree level) by the logging band dendrometers. Finally we discussed the effect of the plant water status on the mineral nutrition of the tree. To conclude, none of the methods alone can implicate the complexity of the water stress, however the combination of the different views gives rather good insight on the tree condition and enable to predict the further tree development.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Aruppillai Suthaparan Arne Stensvand Sissel Torre Maria Herrero Rolf Inge Pettersen David Gadoury Hans Ragnar GislerødAbstract
The effect of day length on production and germinability of conidia and severity of disease caused by Podosphaera pannosa, the causal agent of rose powdery mildew, was studied. Whole potted plants or detached leaves of Rosa interspecific hybrid 'Mistral' were inoculated with P. pannosa and exposed to 0, 12, 18, 20, 22, or 24 h of artificial light per day in growth chambers equipped with mercury lamps. Increasing duration of illumination from 18 to 20 to 24 h per day reduced production of conidia by 22 to 62%. Exposure to 24 h of illumination per day also strongly reduced disease severity compared with 18 h. Our results suggest that increasing day lengths from 18 h per day to 20 to 24 h may suppress the disease significantly and, thereby, reduce the need for fungicide applications against powdery mildew.
Authors
Aruppillai Suthaparan Sissel Torre Arne Stensvand Maria Herrero Rolf Inge Pettersen David M. Gadoury Hans Ragnar GislerødAbstract
When rose plants bearing colonies of Podosphaera pannosa were placed in a wind tunnel, the number of conidia trapped was directly proportional to intensity of daylight-balanced (white) light from 5 to 150 mu mol m(-2) s(-1). Illumination of samples using blue (420 to 520 nm) light-emitting diodes (LEDs) increased the number of conidia trapped by a factor of approximately 2.7 over white light but germination of conidia under blue light was reduced by approximately 16.5% compared with conidia germination under white light. The number of conidia trapped under far-red (>685 nm) LEDs was approximately 4.7 times higher than in white light, and 13.3 times higher than under red (575 to 675 nm) LEDs, and germination was not induced compared with white light. When mildewed plants were exposed to cycles of 18 h of white light followed by 6 h of blue, red, far-red light, or darkness, light from the red LEDs reduced the number of conidia trapped by approximately 88% compared with darkness or far-red light. Interrupting the above dark period with 1 h of light from red LEDs also reduced the number of conidia trapped, while a 1-h period of light from far-red following the 1 h of light from red LEDs nullified the suppressive effect of red light. Our results indicate that brief exposure to red light during the dark interval may be as effective as continuous illumination in suppressing powdery mildew in greenhouse rose plant (Rosa x hybrida).