Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

Abstract

We monitored the effects of the drought stress on 20-year old clones of Norway spruce (Picea abies) by using a range of instrumental methods. On two experimental plots (Hoxmark, Norway, 59°40\"14`N, 10°47\"36`E) the drought was induced in a period between May and October 2009 by removing the throughfall using the rain shelters and trenching. We collected data on soil moisture, stem and branch sap flow, xylem diameter, anatomical and calorimetric analysis of the needles, fine root biomass and dynamics and resistance to pathogens. Standard meteorological data were collected locally throughout the whole period. Here we present the preliminary analysis of sap flow and xylem diameter in a period 1-17 august 2009. The sap flow was measured on stems in the breast height by using the method of stem tissue heat balance (THB, EMS Brno). The values were measured once in 2 minutes and saved as the average of 10 minutes. The fluctuations in xylem diameter was monitored by using the automatic dendrometers DR26 (EMS Brno). We evaluated both diurnal and seasonal dynamics. Preliminary results show a significant difference in shape of diurnal curves of transpiration as well as different time lag among the sap flow and the potential evapo-transpiration. Also the differences in diurnal dynamics of the stem circumference suggested different xylem water potential in stressed and control trees. In the drought-stressed trees the diurnal fluctuation in stem diameter was about 4 times higher and the total stem increment one third lower, com-pared to the control trees.

Abstract

The Pasvik River valley is the easternmost part of Norway, and borders to Finland and Russia. In Norway it is known for its wilderness and taiga forests. During the 1960-1970s most of the mature pine forests were harvested, and large areas of pine stands have been naturally regenerated. In addition, large areas are covered with birch. The Pasvik River valley and the adjoining areas are therefore important both as an area for growing timber resources and for recreation. However, these areas have also been exposed to air pollution from Russian smelting industry since the 1930s. In addition to sulphur dioxide, emissions consist of various heavy metals which contaminate the surroundings. The main pollution source is the huge nickel plant in the Russian city Nikel, located only 10 km from the Norwegian border. For a long time there was general concern for the quality of the forest ecosystems in these areas. This concern accelerated in the mid-1980s.

To document

Abstract

Traditional wood preservatives based on biocides are effective against wood-deteriorating organisms because of their toxicity. By contrast, modified woods are non-toxic by definition. To investigate the efficiency of various wood modifications, quantitative real-time polymerase chain reaction (qPCR) was used to profile the DNA amounts of the white-rot fungus Trametes versicolor (L.) [Lloyd strain CTB 863 A] during an 8-week-long growth period in treated Pinus sylvestris (L.) sapwood. The studied wood was modified by acetylation, furfurylation, and thermal treatment. The traditional wood preservatives bis-(N-cyclohexyldiazeniumdioxy)-copper (Cu-HDO) and chromated copper arsenate (CCA) were used as references, whereas untreated P. sylvestris (L.) sapwood served as a control. The maximum levels of fungal DNA in native wood occurred at the end of the experiment. For all wood treatments, the maximum fungal DNA level was recorded after an incubation period of 2 weeks, followed by a decline until the end of the trial. For the preservative-treated woods, Cu-HDO showed the lowest level of fungal DNA throughout the experiment, indicating that exploratory hyphal growth is limited owing to the phytotoxicity of the treatment. The other treatments did not inhibit the exploratory hyphal growth phase. We conclude that qPCR studies of hyphal growth patterns within wood should provide a powerful tool for evaluating and further optimizing new wood protection systems.

Abstract

Development in surface mould growth on painted/unpainted wooden claddings and acting climatic factors were investigated over a period of 3 years. Eight wood substrates, including modified, preservative-treated and untreated wood, were tested in combination with three types of paint: (1) water-borne alkyd modified acrylic paint without fungicide; (2) solvent-borne alkyd paint without fungicide; and (3) ICP (internal comparison product). One set of samples was exposed unpainted. The samples were tested according to a modified version of EN 927-3. A logistic regression model was fitted to the data. The degree of mould growth varied with exposure time, coating typology, wood substrate, temperature and relative humidity. Exposure time and coating typology contributed most to the model. After 3 years of outdoor exposure unpainted panels and panels coated with solvent-borne paint without fungicide had more mould growth than panels coated with ICP and water-borne paint without fungicide. Unpainted oil/copper–organic preservative-treated claddings had higher resistance to mould growth than other unpainted wood substrates. Coated untreated pine and coated acetylated pine were more susceptible to mould growth than other coated wooden substrates.

Abstract

Microbial disfigurement of coated wooden surfaces is considered a major maintenance concern and will shorten the aesthetic service life of wooden facades. The effect of the physical surface structure of a paint film when applied on wood may have an impact on the susceptibility to mould growth. Six model paints were formulated to give the following physical surface structures: glossy, matt, soft, hard, hydrophobic, and a film with air inclusion. The model paints and a standard paint, with and without fungicide, were applied on panels of Norway spruce (Picea abies L Karst.) and exposed outdoors for nearly three years according to a modified version of EN 927-3. A logistic regression model was fit to the data, and the degree of mould growth varied with exposure time and type of paint. Hard model paint was significantly more susceptible than the other model paints and had a performance close to the standard paint without fungicide. Soft model paint provided the best performance, with the least mould growth. Temperature, relative humidity, and precipitation did not significantly contribute to the model. (C) 2010 Elsevier Ltd. All rights reserved.

To document

Abstract

The blue-stain fungus Ceratocystis resinifera colonizes wounds on living Picea spp. and other conifers in Europe and North America. Little is known regarding the pathogenicity of this fungus and consequently, four Norwegian C. resinifera isolates were inoculated on to Norway spruce (Picea abies) using two different techniques. These included single-point inoculations on young trees (two inoculations per tree on 14-year-old trees) and mass-inoculations on older trees (∼200 inoculations per tree on 34-year-old trees). In both experiments, C. resinifera induced minor symptoms that in most cases did not differ significantly from inoculation with sterile agar. The virulent blue-stain fungus C. polonica, which was inoculated for comparative purposes, induced extensive symptoms, causing 83% dead cambium circumference and 82% blue-stained sapwood, and long necrotic lesions in the phloem. The results suggest that C. resinifera is non-pathogenic or only mildly pathogenic to Norway spruce and does not present a threat to these trees.

To document

Abstract

Constitutive and inducible terpene production is involved in conifer resistance against bark beetles and their associated fungi. In this study 72 Norway spruce (Picea abies) were randomly assigned to methyl jasmonate (MJ) application, inoculation with the bluestain fungus Ceratocystis polonica, or no-treatment control. We investigated terpene levels in the stem bark of the trees before treatment, 30 days and one year after treatment using GC–MS and two-dimensional GC (2D-GC) with a chiral column, and monitored landing and attack rates of the spruce bark beetle, Ips typographus, on the trees by sticky traps and visual inspection. Thirty days after fungal inoculation the absolute amount and relative proportion of (+)-3-carene, sabinene, and terpinolene increased and (+)-α-pinene decreased. Spraying the stems with MJ tended to generally increase the concentration of most major terpenes with minor alteration to their relative proportions, but significant increases were only observed for (−)-β-pinene and (−)-limonene. Fungal inoculation significantly increased the enantiomeric ratio of (−)-α-pinene and (−)-limonene 1 month after treatment, whereas MJ only increased that of (−)-limonene. One year after treatment, both MJ and fungal inoculation increased the concentration of most terpenes relative to undisturbed control trees, with significant changes in (−)-β-pinene, (−)-β-phellandrene and some other compounds. Terpene levels did not change in untreated stem sections after treatment, and chemical induction by MJ and C. polonica thus seemed to be restricted to the treated stem section. The enantiomeric ratio of (−)-α-pinene was significantly higher and the relative proportions of (−)-limonene were significantly lower in trees that were attractive to bark beetles compared to unattractive trees. One month after fungal inoculation, the total amount of diterpenes was significantly higher in putative resistant trees with shorter lesion lengths than in putative susceptible trees with longer lesions. Thus, terpene composition in the stem bark may be related to resistance of Norway spruce against I. typographus and C. polonica.

To document

Abstract

The anamorph genus Leptographium Lagerberg and Melin includes species that are typically bark beetleassociated fungi, with teleomorphs in Grosmannia. During a survey of ophiostomatoid fungi in Norway, two unusual species, that fit the broader morphological description of Leptographium, were isolated directly from the rootfeeding beetles, Dryocetes authographus and Hylastes cunicularius, as well as from roots infested by these insects. The first of these could be distinguished from other described species based on a sparse sporulation, black spore drops and chlamydospores in older cultures. This species also produces a Hyalorhinocladiella synanamorph. The second species was characterised by distinctly curved conidia. Based on these unusual morphological characteristics and distinct DNA sequences, these fungi were recognised as new taxa for which the names Leptographium chlamydatum sp. nov. and L. curvisporum sp. nov. are provided.