Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Abstract

Successful introduction of the new cultivars requires proper pomological, phenological and as well as technological evaluation. It is particularly important at the harsh Norwegian climate conditions. Investigations were conducted with apple cultivar ‘Eden‘ / ‘Wursixo‘ (WUR 6), with the aim to establish an optimal balance between yield, fruit quality and bearing regularity. Four different crop load levels were tested in 3 consecutive years in the orchard planted 3.5 x 1 m and trained as slender spindle. Lower crop load levels guaranteed good return bloom, a very high share of fruits harvested during the first picking, and larger fruits. Increasing crop load led to less intensive return bloom, smaller fruit sizes and higher share of fruits harvested during the second picking. It was found that ‘Eden‘ is strictly alternating cultivar and precise crop load levels according to the tree age and tree vigour were defined. In order to keep ‘Eden‘ trees in regular bearing mode crop load levels should be maintained at 4.5-5 fruits cm-2 of trunk cross-sectional area (TCSA) in the 3rd and 6-7 fruits in the 4th growing season

Abstract

In the frame of EUFRIN apple rootstock trials, seven apple rootstocks are being tested for their resistance to ARD (apple replant disease) in several European countries. Current paper focus on the rootstock and soil type (ARD vs. fresh soil) effect on the accumulation of phenolic compounds in apple fruit. This research was performed at the Lithuanian trial site. Accumulation of phenolics compounds in fruit tissues was enhanced at replant soil. On the average of all rootstocks, total phenol content in fruit flesh increased by 25%, and in fruit peel by 31%. Hyperoside and rutin in fruit flesh and hyperoside, reynoutrin, phloridzin and procyanidin C1 were the most variable among detected phenolic compounds and their content in fruits from ARD soil was by 50 – 77 % higher than in fruits from the fresh soil. Content of (-) epicatechin in fruit flesh and (+) catechin and procyanidin B1 in fruit peel was similar in both ARD and fresh soil. Rootstock had a significant effect on the accumulation of phenolic compounds, but this effect was modified by soil conditions. Soil type had no effect on total phenol accumulation in fruits (flesh and peel) grown on Pajam 2 rootstock. Also, a stable phenol content in fruit flesh was on G.11 and M200 rootstocks, and in fruit peel on G.41. The highest increase of total phenol content at replant conditions was recorded on B.10 (by 66% in flesh and 60% in peel) and on G.935 (by 68% in flesh and 47% in peel) rootstocks.