Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

To document

Abstract

Catchment scale hydrological models are promising tools for simulating the effect of catchment-specific processes and management on soil and water resources. Here, we present a model intercomparison study of runoff simulations using three different semi-distributed rainfall-runoff catchment models. The objective of this study was to demonstrate the applicability of the Hydrologiska Byrans Vattenavdelning (HBV-Light); Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport (PERSiST); and INtegrated CAtchment (INCA) models on Somogybabod Catchment, near Lake Balaton, Hungary. The models were calibrated and validated against observed discharge data at the outlet of the catchment for the period of January 1, 2006 –July 12, 2015. Model performance was evaluated using graphical representations, e.g. daily and monthly hydrographs and Flow Duration Curves (FDC) and model evaluation statistic; Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2). The simulation results showed that the models provided good estimates of monthly average discharge (0.60–0.90 NSE; 0.60–0.91 R2) and satisfactory results for daily discharge (0.46–0.62 NSE; 0.50–0.67 R2). We found that the application of hydrological models serves as a powerful basis for ensemble modelling of average runoff and could enhance our understanding of the eco-hydrological and transport processes within catchments. On the other hand, it can highlight the uncertainty of model forecasts and the importance of goal specific evaluation.

To document

Abstract

The main environmental stressor of the Baltic Sea is elevated riverine nutrient loads, mainly originating from diffuse agricultural sources. Agricultural practices, intensities, and nutrient losses vary across the Baltic Sea drainage basin (1.75 × 106 km2 , 14 countries and 85 million inhabitants). Six “Soil and Water Assessment Tool” (SWAT) models were set up for catchments representing the major agricultural systems, and covering the different climate gradients in the Baltic Sea drainage basin. Four fertilizer application scenarios were run for each catchment to evaluate the sensitivity of changed fertilizer applications. Increasing sensitivity was found for catchments with an increasing proportion of agricultural land use and increased amounts of applied fertilizers. A change in chemical fertilizer use of ±20% was found to affect watershed NO3-N loads between zero effect and ±13%, while a change in manure application of ±20% affected watershed NO3-N loads between zero effect and −6% to +7%.

To document

Abstract

Several mathematical models have been proposed for describing particle‐size distribution (PSD) data, but their characteristics and accuracy have not been investigated for the < 0.002, 0.002–0.05 and 0.05–2.0‐mm fractions separately. Therefore, the primary objective of this study was to examine the characteristics of various PSD models and to evaluate the accuracy of fitting to the entire PSD curve and to each of the three fractions separately. Thirty‐six PSD models were fitted to the experimental data of 160 soil samples from Iran. The beerkan estimation of soil transfer (BEST), Fredlund unimodal and bimodal, two‐ and three‐parameter Weibull, Rosin–Rammler and van Genuchten models provided the best fit to the experimental data of the three size fractions above, but with a different order of performance for the different fractions. For all textural fractions, the following models performed substantially less well than the other models: the offset‐non‐renormalized lognormal, simple lognormal, S‐curve, Schuhmann, Yang, Turcotte and Gompertz models. A comparison of the overall accuracy and simplicity of the models indicated that the BEST, two‐ and three‐parameter Weibull and Rosin–Rammler models provided the best fit to the experimental data for the entire curve, which is similar but does not correspond fully to the findings of a similar, earlier study. We found that the number of model parameters and the type of equation did not explain the models' fitting capabilities. We also found that the iterated function system (IFS) model performed better than the PSD models for all fractions. Comprehensive comparisons of PSD models will be of value to future model users, but it is important to note that such comparisons will remain dataset dependent. This is likely to continue until they are tested on a near‐infinite synthetic dataset that covers all possible data options.