
Colombia Coffee Value Chain Project
This project intends to promote inclusive growth in the largest agricultural sector in Colombia, by introducing innovative practices in the production and handling system of coffee.
NIBIO is a project driven research institute and collects approximately 100 million NOK annually in project funding from both national and international sources. A lot of activity is carried out through EU and EEA-projects and we also participate in research projects in Asia, Africa and Latin America. NIBIO coordinates several large international projects with a particular focus on food security and climate change. The list of projects is not complete.
This project intends to promote inclusive growth in the largest agricultural sector in Colombia, by introducing innovative practices in the production and handling system of coffee.
Norway is strongly committed to the Paris Climate Agreement with an ambitious goal of 40% reduction in greenhouse gas emission by 2030. In this context, the land sector has the unique capacity to actively removing CO
Several scientific groups have concluded that the use of biochar as an on-farm management tool should be further investigated. Review articles pinpoint the use of biochar to reduce greenhouse gas (GHG) emissions from the entire agricultural production, and this should be studied using whole-chain models.
Biochar is emerging as one of the most promising tools to remove CO2 from the atmosphere and permanently sequester carbon (C) in soils. The technology is based on pyrolysis of fresh biomass, a process that also generates energy in the form of syn-gas and bio-oil. Pyrolysis conditions greatly affect both, biochar quality and energy yield. With regards to C sequestration, the ideal biochar product should be of highest possible recalcitrance in order to ensure its longevity in the soil. Due to the slow mineralization of biochar in soil environments, the assessment of its long-term stability and hence, C sequestration potential over long time periods (hundreds of years and more), presents a major scientific challenge. The overall objective of the present proposal is to investigate the relationship between pyrolysis conditions, type of feedstock and biochar stability, and to combine
advanced techniques for evaluation proxies of the long-term stability of biochar in soils. Transformations of biochar structures will be monitored in high precision incubations using 13C stable isotope labeling. The evolution of biochar chemical structures in soils will be monitored through black-carbon specific benzenepolycarboxylic acid biomarkers (BPCA) and 13C nuclear magnetic resonance (NMR). These time-consuming BPCA- and NMR- methods will be used to calibrate a high throughput mid-infrared spectroscopy method (MIR) for frequent monitoring of a large number of incubated samples. The physical structure of biochar will be monitored with scanning electron microscopy. These advanced proxies will be combined with ecotoxicological tests and energy yield investigations to determine optimum pyrolysis conditions for mitigating greenhouse gas emissions with environmentally-safe biochar.