Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Tetraselmis chui is known to accumulate starch when subjected to stress. This phenomenon is widely studied for the purpose of industrial production and process development. Yet, knowledge about the metabolic pathways involved is still immature. Hence, in this study, transcription of 27 starch-related genes was monitored under nitrogen deprivation and resupply in 25 L tubular photobioreactors. T. chui proved to be an efficient starch producer under nitrogen deprivation, accumulating starch up to 56% of relative biomass content. The prolonged absence of nitrogen led to an overall down-regulation of the tested genes, in most instances maintained even after nitrogen replenishment when starch was actively degraded. These gene expression patterns suggest post-transcriptional regulatory mechanisms play a key role in T. chui under nutrient stress. Finally, the high productivity combined with an efficient recovery after nitrogen restitution makes this species a suitable candidate for industrial production of high-starch biomass.

To document

Abstract

Weeds are one of the biggest problems that modern agriculture is facing worldwide due to the impact they have on crop productivity. Thus, there is a necessity to develop crop varieties with herbicide resistance or tolerance, which would provide cost-effective tools for helping farmers control weeds in the field. Development of herbicide-tolerant crops was initially based on conventional plant breeding and transgenic technology. In recent years, the emerging genome technologies, including ZFNs (zinc-finger nucleases), TALENs (transcription activator-like effector nucleases), and CRISPR (clustered regularly interspaced short palindromic repeat), provide us a new way for crop improvement through precise manipulation of endogenous genes in the plant genomes. Among these, CRISPR technologies, including nuclease systems, base editors, and prime editors, are really promising in creating novel crop germplasms with herbicide tolerance as they are simple, easy to use, and highly efficient. In this review, we briefly summarize the latest development and breakthroughs of CRISPR technologies in creating herbicide-tolerant crops. Finally, we discuss the future applications of CRISPR technologies in developing herbicide-tolerant crops.

To document

Abstract

The banana weevil (Cosmopolites sordidus) and the burrowing nematode Radopholus similis represent two of the most important pests of bananas. Previously, colonization of banana plants by the non-pathogenic Fusarium oxysporum (isolate V5w2) and the entomopathogenic Beauveria bassiana (isolate WA) have been shown to increase host resistance to various banana pests and diseases. However, there is limited data on how the combined inoculation of these isolates would affect field performance of bananas. In this study, the fungal endophytes were inoculated separately and in combination. Tissue cultured plantlets of cooking banana cultivar Mbwazirume and dessert banana cultivar Grande Naine were inoculated by root drenching with a suspension of 1.0 × 107 spores mL−1 of the endophytes on three occasions, separated 4 weeks apart, before transplanting into the field. Each plantlet was further inoculated with 1800 nematodes, composed primarily of R. similis. Inoculation of banana plants with the fungal endophytes significantly reduced nematode densities by >34%. Similarly, plant toppling was lower in the endophyte-enhanced plants (<16.5%) compared with the control (23.3%). We also observed improved yield of the first crop cycle in the endophyte-enhanced plants, which yielded >11 t ha−1 year−1 versus 9 t ha−1 year−1 achieved in the non-inoculated plants. These findings demonstrate the benefits of fungal endophytes in improving the yield of both cooking and dessert bananas via suppression of nematode densities and nematode-related damage.

To document

Abstract

The success of Phasmarhabditis hermaphrodita (Schneider) Andrássy (Rhabditida: Rhabditidae) as a biological control agent of molluscs has led to a worldwide interest in phasmarhabditids. However, scant information is available on the lifecycle development of species within the genus. In the current study, the development of P. hermaphrodita, Phasmarhabditis papillosa, Phasmarhabditis bohemica and Phasmarhabditis kenyaensis were studied using ex vivo cultures, in order to improve our understanding of their biology. Infective juveniles (IJs) of each species were added to 1 g of defrosted homogenized slug cadavers of Deroceras invadens and the development monitored after inoculated IJ recovery, over a period of eight–ten days. The results demonstrated that P. bohemica had the shortest development cycle and that it was able to produce first-generation IJs after eight days, while P. hermaphrodita, P. papillosa and P. kenyaensis took ten days to form a new cohort of IJs. However, from the perspective of mass rearing, P. hermaphrodita has an advantage over the other species in that it is capable of forming self-fertilizing hermaphrodites, whereas both males and females are required for the reproduction of P. papillosa, P. bohemica and P. kenyaensis. The results of the study contribute to the knowledge of the biology of the genus and will help to establish the in vitro liquid cultures of different species of the genus.

To document

Abstract

The success of the mollusc-parasitic nematode, Phasmarhabditis hermaphrodita (Schneider) Andrássy (Rhabditida: Rhabditidae), as a biological control agent in Europe has led to worldwide interest in phasmarhabditids as biocontrol agents. In this study, the mass culture potential of three phasmarhabditids, namely Phasmarhabditis papillosa, Phasmarhabditis kenyaensis and Phasmarhabditis bohemica, was assessed. In addition, ten bacterial candidates, consisting of seven associated with slugs and three associated with entomopathogenic nematodes, were investigated. The bacteria were tested for their ability to cause mortality to Deroceras invadens, as well as to support nematode growth. Initial mortality studies demonstrated that Kluyvera, Aeromonas and Pseudomonas spp. (AP3) caused 100% mortality when they were injected into the haemocoel of D. invadens. However, in growth studies, Pseudomonas sp. (AP4) was found to be the most successful bacterium, leading to recovery and reproduction in almost all nematode species, except for P. kenyaensis. In flask studies, P. bohemica, which showed exceptional growth with Pseudomonas sp. (AP1), was chosen for further investigation. The effect of inoculating flasks with different concentrations of Pseudomonas sp. (AP1), as well as with different concentrations of P. bohemica, was evaluated by assessing the nematode populations for 14 days. The results indicated that the lowest, 1% (v/v), bacteria inoculation led to higher total nematode and to infective juvenile (IJ) yield, with flasks with the highest IJ inoculum (3000 IJs/ml) having a positive effect on the total number of nematodes and IJs in cultures of P. bohemica. This study presents improvements for the mass-culturing of nematodes associated with molluscs.

To document

Abstract

Despite their important ecological roles for soil health and soil fertility, free-living nematodes (FLN) have received relatively limited research attention. The present study evaluated the community structure and diversity of FLN in a field setting. The experiments were conducted in on-farm and on-station field plots sown to maize (Zea mays) and beans (Phaseolus vulgaris) under four cropping practices. These farming systems included organic (compost and biopesticide use), conventional (synthetic fertilizer and pesticide applications), farmer practice (organic and synthetic amendments) and a control (non-amended plots). Nineteen genera of free living nematodes, belonging to bacterivores, fungivores, omnivores and predators were recorded. Among these, bacterivores (Cephalobidae and Rhabditidae) were the most dominant group in the organic systems when compared to the conventional and control systems. Farming systems influenced the abundance and diversity of free living nematodes, with the organic farming system having higher values of maturity, enrichment and structural indices than other farming systems. This would indicate greater stability in soil health and improved soil fertility. This implies that the organic farming systems play a key role in improving the biodiversity and population buildup of FLN, compared with other systems. Our study helps to improve our understanding of how farming systems influence soil biodynamics, while studies on the longer-term effects of organic and conventional farming systems on the build-up or reduction of free living nematodes for improved ecosystem services are needed.

To document

Abstract

Despite the availability of improved antiviral therapies, infection with Hepatitis B virus (HBV) remains a3 significant health issue, as a curable treatment is yet to be discovered. Current HBV vaccines relaying on the efficient expression of the small (S) envelope protein in yeast and the implementation of mass vaccination programs have clearly contributed to containment of the disease. However, the lack of an efficient immune response in up to 10% of vaccinated adults, the controversies regarding the seroprotection persistence in vaccine responders and the emergence of vaccine escape virus mutations urge for the development of better HBV immunogens. Due to the critical role played by the preS1 domain of the large (L) envelope protein in HBV infection and its ability to trigger virus neutralizing antibodies, including this protein in novel vaccine formulations has been considered a promising strategy to overcome the limitations of S only-based vaccines. In this work we aimed to combine relevant L and S epitopes in chimeric antigens, by inserting preS1 sequences within the external antigenic loop of S, followed by production in mammalian cells and detailed analysis of their antigenic and immunogenic properties. Of the newly designed antigens, the S/preS116–42 protein assembled in subviral particles (SVP) showed the highest expression and secretion levels, therefore, it was selected for further studies in vivo. Analysis of the immune response induced in mice vaccinated with S/preS116–42- and S-SVPs, respectively, demonstrated enhanced immunogenicity of the former and its ability to activate both humoral and cellular immune responses. This combined activation resulted in production of neutralizing antibodies against both wild-type and vaccine-escape HBV variants. Our results validate the design of chimeric HBV antigens and promote the novel S/preS1 protein as a potential vaccine candidate for administration in poor-responders to current HBV vaccines.