Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Florencia A. Yannelli Gerhard Karrer Rea Hall Johannes Kollmann Tina HegerAbstract
Question Disturbed areas offer great opportunities for restoring native biodiversity, but they are also prone to invasion by alien plants. Following the limiting similarity hypothesis, we address the question of whether or not similarity of plant functional traits helps developing seed mixtures of native communities with high resistance to invasive species at an early stage of restoration. Location Centre of Greenhouses and Laboratories Dürnast, Technische Universität München, Freising, Germany. Methods Using a system of linear equations, we designed native communities maximizing the similarity between the native and two invasive species according to ten functional traits. We used native grassland plants, two invasive alien species that are often problematic in disturbed areas (i.e., Ambrosia artemisiifolia and Solidago gigantea) and trait information obtained from databases. The two communities were then tested for resistance against establishment of the two invaders separately in a greenhouse experiment. We measured height of the invasive species and above‐ground biomass, along with leaf area index, 4 and 8 months after sowing respectively. Results Both invasive species were successfully reduced by the native community designed to suppress S. gigantea dominated by small‐seeded species. These results could be considered as partial support for the limiting similarity hypothesis. However, given the success of this mixture against both invasive species, suppression was better explained by a seed density effect resulting from the smaller seed mass of the native species included in this mixture. Further, the dominance of a fast‐developing competitive species could also contribute to its success. Conclusions There was no unequivocal support for the limiting similarity hypothesis in terms of the traits selected. Instead we found that increasing seeding density of native species and selecting species with a fast vegetative development is an effective way to suppress invasive plants during early stages of restoration. If limiting similarity is used to design communities for restoration, early life‐history traits should be taken into account.
Abstract
No abstract has been registered
Authors
Olav Aaseth Hegnar Dejan Petrovic Bastien Bissaro Gry Alfredsen Aniko Varnai Vincent EijsinkAbstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that perform oxidative cleavage of recalcitrant polysaccharides. We have purified and characterized a recombinant family AA9 LPMO, LPMO9B, from Gloeophyllum trabeum (GtLPMO9B) which is active on both cellulose and xyloglucan. Activity of the enzyme was tested in the presence of three different reductants: ascorbic acid, gallic acid, and 2,3-dihydroxybenzoic acid (2,3-DHBA). Under standard aerobic conditions typically used in LPMO experiments, the first two reductants could drive LPMO catalysis whereas 2,3-DHBA could not. In agreement with the recent discovery that H2O2 can drive LPMO catalysis, we show that gradual addition of H2O2 allowed LPMO activity at very low, substoichiometric (relative to products formed) reductant concentrations. Most importantly, we found that while 2,3-DHBA is not capable of driving the LPMO reaction under standard aerobic conditions, it can do so in the presence of externally added H2O2. At alkaline pH, 2,3-DHBA is able to drive the LPMO reaction without externally added H2O2, and this ability overlaps entirely the endogenous generation of H2O2 by GtLPMO9B-catalyzed oxidation of 2,3-DHBA. These findings support the notion that H2O2 is a cosubstrate of LPMOs and provide insight into how LPMO reactions depend on, and may be controlled by, the choice of pH and reductant.
Abstract
No abstract has been registered
Authors
Anita SønstebyAbstract
No abstract has been registered
Authors
Anita SønstebyAbstract
No abstract has been registered
Authors
Anita SønstebyAbstract
No abstract has been registered
Authors
Anita SønstebyAbstract
No abstract has been registered
Authors
Anna Avetisyan Anush Panosyan Martina Paponov Ivan Paponov Inger Martinussen Kirsten Krause Zara Harutyunyan Irina Vardanian Andreas Melikyan Manvel Badalyan Tatevik Aloyan Alla Vardanyan Samvel Shoukourian Laura JaakolaAbstract
No abstract has been registered
Authors
Inger Martinussen Tomasz Leszek Woznicki Unni Myrheim Roos Anita Sønsteby Eivind Uleberg Anne Linn HykkerudAbstract
No abstract has been registered