Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

In 2018–2019, establishment problems were encountered, after reseeding creeping bentgrass (Agrostis stolonifera) on a sand-based putting green after ice encasement at the NIBIO Turfgrass Research Center, Norway. Seeds germinated, but the seedlings attained a purple color and died in large patches. Replacement of the top 3 cm layer with new sand amended with Sphagnum peat or garden compost did not solve the problem. To explain this phenomenon, we (1) analyzed the original substrate for nematodes in patches with and without reestablishment failure; and (2) conducted a factorial pot trial with creeping bentgrass and Chewings fescue (Festuca rubra ssp. commutata) seeded on different substrates, some of them in layers, and with and without phosphorus (P) fertilization. The nematode counts showed six times more stubby-root nematodes and two times more spiral nematodes and needle nematodes in the patches with dead seedlings than in the patches with healthy seedings. In the pot trial, the fastest and slowest reestablishment was observed with new sand amended with garden compost and in the two treatments that included the original substrate, respectively. Replacement of the top 3 cm of the old substrate with new garden compost resulted in stagnation of bentgrass seedlings from four weeks after seeding, while fescue seedlings were unaffected. We conclude that the failure to reestablish creeping bentgrass was primarily due to nematodes, which are likely to be more critical for seedlings than for established turf. The green was later reestablished successfully with a 100 % red fescue seed blend.

To document

Abstract

Dollar spot, caused by at least five Clarireedia species (formerly Sclerotinia homoeocarpa F. T. Benn.), is one of the economically most important turfgrass diseases worldwide. The disease was detected for the first time in Scandinavia in 2013. There is no available information from Scandinavian variety trials on resistance to dollar spot in turfgrass species and cultivars (http://www.scanturf.org/). Our in vitro screening (in glass vials) of nine turfgrass species comprising a total of 20 cultivars showed that on average for ten Clarireedia isolates of different origin, the ranking for dollar spot resistance in turfgrass species commonly found on Scandinavian golf courses was as follows: perennial ryegrass = slender creeping red fescue > strong creeping red fescue > Kentucky bluegrass = velvet bentgrass > colonial bentgrass = Chewings fescue ≥ creeping bentgrass = annual bluegrass. Significant differences in aggressiveness among Clarireedia isolates of different origin were found in all turfgrass species except annual bluegrass (cv. Two Putt). The U.S. C. jacksonii isolate MB-01 and Canadian isolate SH44 were more aggressive than C. jacksonii isolates from Denmark and Sweden (14.10.DK, 14.15.SE, and 14.16.SE) in velvet bentgrass and creeping bentgrass. The Swedish isolate 14.112.SE was generally more aggressive than 14.12.NO despite the fact that they most likely belong to the same Clarireedia sp. The U.S. C. monteithiana isolate RB-19 had similar aggressiveness as the Scandinavian C. jacksonii isolates, but was less aggressive than two U.S. C. jacksonii isolates MB-01 and SH44. Thus, aggressiveness of Clarireedia isolates was more impacted by their geographic origin and less by species of the isolate and/or the host turfgrass species.

2020

Abstract

I 2019 års kartlegging av furuvednematoden Bursaphelenchus xylophilus i Norge ble 400 prøver tatt fra hogstavfall og vindfall av Pinus sylvestris L. med angrep av furubukk Monochamus spp. Prøvene ble tatt ut i Akershus, Buskerud, Østfold, Telemark, Aust-Agder og Vest-Agder. Prøvene som besto av flis ble inkubert ved +25oC i to uker før de ble ekstrahert med Baermanntrakt og undersøkt i mikroskop. Furuvednematoden B. xylophilus ble ikke påvist i prøvene, men den naturlig forekommende arten Bursaphelenchus mucronatus kolymensis ble oppdaget i fire prøver fra Agderfylkene. Feller med feromoner for fangst av furubukk ble satt opp i Hedmark (Elverum, Romedal, Stange og ved Geitholmsjøen), Møre og Romsdal (Kvanne) og Østfold (Fredrikstad og Vestby). I laboratoriet ble billene kuttet i biter og ekstrahert med en modifisert Baermanntrakt. Suspensjonen fra ekstraksjonene ble undersøkt i stereomikroskop for forekomst av infektive stadier av Bursaphelenchus spp.. Ingen nematoder kunne påvises i de 106 undersøkte billene. I perioden 2000 – 2019 er totalt 8123 vedprøver analysert. Flest prøver er tatt i Østfold, fulgt av Hedmark, Telemark, Buskerud og Aust-Agder. I kartleggingen 2019 ble B. mucronatus kolymensis påvist i fire av de 400 vedprøvene, tilsvarende en frekvens på 0,01 (1 %). For hele perioden 2000 - 2019 ble Bursaphelenchus mucronatus kolymensis + B. macromucronatus, oppdaget i 73 av 8123 vedprøver som gir en eteksjonsfrekvens på 0,009 (ca. 1 %). I perioden 2014-2019 har Bursaphelenchus mucronatus kolymensis blitt påvist fem av totalt 581 biller, som gir den samme frekvensen som for vedprøver. B. mucronatus kolymensis og B. macromucronatus likner på B. xylophilus i generell biologi og habitatvalg. Hvis vi antar en hypotetisk frekvens i forekomsten til B. xylophilus som er 100 ganger lavere enn for disse naturlig forekommende nematodene, dvs. 0,00009, kan det antall prøver som trengs for en påvisning av B. xylophilus med 95 % konfidensintervall estimeres til 30 801. Dette indikerer at vi i dag hypotetisk sett har nådd bare 26 % av det antall prøver som trengs for å kunne erklære Norge fri for furuvednematoden B. xylophilus.

To document

Abstract

In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm.

To document See dataset

Abstract

1. Due to globalisation, trade and transport, the spread of alien species is increasing dramatically. Some alien species become ecologically harmful by threatening native biota. This can lead to irreversible changes in local biodiversity and ecosystem functioning, and, ultimately, to biotic homogenisation. 2. We risk-assessed all alien plants, animals, fungi and algae, within certain delimitations, that are known to reproduce in Norway. Mainland Norway and the Arctic archipelago of Svalbard plus Jan Mayen were treated as separate assessment areas. Assessments followed the Generic Ecological Impact Assessment of Alien Species (GEIAA) protocol, which uses a fully quantitative set of criteria. 3. A total of 1519 species were risk-assessed, of which 1183 were species reproducing in mainland Norway. Among these, 9% were assessed to have a severe impact, 7% high impact, 7% potentially high impact, and 49% low impact, whereas 29% had no known impact. In Svalbard, 16 alien species were reproducing, one of which with a severe impact. 4. The impact assessments also covered 319 so-called door-knockers, i.e. species that are likely to establish in Norway within 50 years, and 12 regionally alien species. Of the door-knockers, 8% and 10% were assessed to have a severe and high impact, respectively. 5. The impact category of most species was driven by negative interactions with native species, transformation of threatened ecosystems, or genetic contamination. The proportion of alien species with high or severe impact varied significantly across the different pathways of introduction, taxonomic groups, time of introduction, and the environments colonised, but not across continents of origin. 6. Given the large number of alien species reproducing in Norway and the preponderance of species with low impact, it is neither realistic nor necessary to eradicate all of them. Our results can guide management authorities in two ways. First, the use of quantitative assessment criteria facilitates the prioritisation of management resources across species. Second, the background information collected for each species, such as introduction pathways, area of occupancy and ecosystems affected, helps designing appropriate management measures.

See dataset

Abstract

No abstract has been registered

To document

Abstract

European ash (Fraxinus excelsior) is threatened by the invasive ascomycete Hymenoscyphus fraxineus originating from Asia. Ash leaf tissues serve as a route for shoot infection but also as a sporulation substrate for this pathogen. Knowledge of the leaf niche partitioning by indigenous fungi and H. fraxineus is needed to understand the fungal community receptiveness to the invasion. We subjected DNA extracted from unwashed and washed leaflets of healthy and diseased European ash to PacBio sequencing of the fungal ITS1-5.8S-ITS2 rDNA region. Leaflets from co-inhabiting rowan trees (Sorbus aucuparia) served as a reference. The overlap in leaflet mycobiomes between ash and rowan was remarkably high, but unlike in rowan, in ash leaflets the sequence read proportion, and the qPCR-based DNA amount estimates of H. fraxineus increased vigorously towards autumn, concomitant with a significant decline in overall fungal richness. The niche of ash and rowan leaves was dominated by epiphytic propagules (Vishniacozyma yeasts, the dimorphic fungus Aureobasidion pullulans and the dematiaceous hyphomycete Cladosporium ramotenellum and H. fraxineus), and endophytic thalli of biotrophs (Phyllactinia and Taphrina species), the indigenous necrotroph Venturia fraxini and H. fraxineus. Mycobiome comparison between healthy and symptomatic European ash leaflets revealed no significant differences in relative abundance of H. fraxineus, but A. pullulans was more prevalent in symptomatic trees. The impacts of host specificity, spatiotemporal niche partitioning, species carbon utilization profiles and life cycle traits are discussed to understand the ecological success of H. fraxineus in Europe. Further, the inherent limitations of different experimental approaches in the profiling of foliicolous fungi are addressed.