Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Sammendrag

In Norway, cover crops were introduced to prevent loss of nitrogen and phosphorous from fields to waterways. Today, cover crops are also used to restore soil organic matter and improve soil health. Yet, the direction and magnitude of these effects are variable, and little is known about the persistence of the C derived from the cover crops in the soil. In the CAPTURE project, we evaluated the soil C sequestration potential from different cover crops used in the main cereal production areas in Norway. To do so, we used pulse labelling with 13C (CO2) to label four different cover crop species Italian ryegrass, phacelia, oilseed radish and summer vetch through their growing period. Cover crops were grown in a monoculture to enable the labelling. The results of the first year of the experiment show that cover crops produced 10- 14 Mg ha-1 above ground biomass, corresponding to 4-6 Mg C ha-1. At the end of the growing season, 3-5% of cover crop C was found in the soil particulate organic matter (POM) fraction and 2-4% in the soil mineral organic matter fraction (MAOM). In the following years, the fate of C derived from the cover crops in the soil will be determined. Furthermore, the soil C sequestration of the different cover crops will be scaled to barley plots in the same experiment, to which cover crops had been undersown in spring or summer. In these plots, N2O emissions have been measured through the whole year. The greenhouse gas trade-offs of cover crops in Norwegian cereal production will be estimated.

Sammendrag

The SiEUGreen project was implemented to enhance the EU-China cooperation in promoting urban agriculture (UA) for food security, resource efficiency and smart, resilient cities through the development of showcases in selected European and Chinese urban and peri-urban areas. In the last four years, SiEUGreen project assembled numerous existing and/or unexploited technologies for the first time to facilitate the development of the state-of-the-art UA model. In light of this, there is natural interest in whether SiEUGreen’s efforts resulted in meaningful impacts. Hence, the objective of this report is to determine the multi-dimensional impacts of the showcases developed and implemented by the SiEUGreen project. The analysis of the impact of the technologies or showcases implemented by the SIEUGreen mainly relies on the data obtained from other relevant tasks and deliverables within the project (e.g., showcase deployment, market analysis, and deliverables related to technology deployment). The willingness to pay studies use NIBIO’s existing data from a contingent valuation survey for willingness to pay of Oslo residents towards food produced using the target technologies. The report is presented as follows: • Section 2 gives an overview of the implementation status of the SiEUGreen technologies with the current technology readiness levels (TRLs); • Section 3 discusses the impacts in terms of land use, food security, environmental resilience and resource efficiency, and societal inclusion; • Section 4 focuses on willingness to pay studies for UA-related technologies; • Section 5 discusses the results and impact pathways; and • Section 6 provides the lessons learned and recommendations. Overall, our assessment indicates that SiEUGreen has provided a wide-ranging array of impacts in multiple dimensions: land-use, food security, environmental resilience and resource efficiency, and societal inclusion.

Til dokument

Sammendrag

Biodiversity is declining globally in response to multiple human stressors, including climate forcing. Nonetheless, local diversity trends are inconsistent in some taxa, obscuring contributions of local processes to global patterns. Arctic tundra diversity, including plants, fungi, and lichens, declined during a 15-year experiment that combined warming with exclusion of large herbivores known to influence tundra vegetation composition. Tundra diversity declined regardless of experimental treatment, as background growing season temperatures rose with sea ice loss. However, diversity declined slower with large herbivores than without them. This difference was associated with an increase in effective diversity of large herbivores as formerly abundant caribou declined and muskoxen increased. Efforts that promote herbivore diversity, such as rewilding, may help mitigate impacts of warming on tundra diversity.