Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Authors
Tore SkrøppaAbstract
No abstract has been registered
Authors
Tore SkrøppaAbstract
No abstract has been registered
Authors
Tore SkrøppaAbstract
No abstract has been registered
Authors
Tore SkrøppaAbstract
The Svalbard Global Seed Vault provides facilities for the safety deposit of samples of seed of distinct genetic resources of importance to humanity, under black box arrangements and in permafrost conditions supplemented by refrigeration in accordance with internationally agreed standards. The Seed Vault was established by the Norwegian Government in 2008 at 78 degrees North in the Norwegian village of Longyearbyen, on Svalbard, the farthest north you can travel in the world on regularly scheduled commercial jet flight. It is managed in a tripartite arrangement between the Norwegian Ministry of Agriculture and Food, the Global Crop Diversity Trust and the Nordic Genetic Resource Center. The last organisation is responsible for the day to day operation and management and organises deposits in the Seed Vault. The Seed Vault offers the most secure back-up possible for a worldwide network of genebanks that together conserve and make available the biological foundation of agriculture. It contains duplicates of collections of all the world’s major seed crops and a huge range of minor crops. The Seed Vault has a capacity of 4.5 million distinct samples. The seeds are stored in “black-box conditions”, meaning that seed storage boxes remain the property of the institution that sent them, and are not even opened by any party other than the depositor. The storage is provided free of charge. At present, there are more than half a million seed samples in the Vault, origination from 212 countries of the world.
Authors
Tore SkrøppaAbstract
No abstract has been registered
Authors
Per Otto Flæte Gry Alfredsen Kristian Bysheim Øyvind Eriksen Anders Qvale Nyrud Birger VenneslandAbstract
Roundwood timber is raw material for numerous products. Wood based products are generally recognised as favourable regarding energy consumption and greenhouse gas (GHG) emissions. Several studies have shown that the net CO2 emissions can be reduced by using biofuels harvested from forests to substitute fossil fuels, and by using wood for building materials. Energy use and GHG emissions associated with producing roundwood can be influenced by a broad range of factors, such as silvicultural practice, topography, applied technology, forestland ownership, industrial structure, etc. This emphasizes the importance of using representative data for energy use and GHG emissions when calculating environmental impacts. The aim of this study was to investigate the embodied energy and life cycle GHG emissions of industrial softwood sawlogs in Norway, covering the production chain from tree seed to log yard. Analyses were based on activity data for the Norwegian forest sector for the year 2007. The results showed that the embodied energy and GHG emissions were low compared with the energy and CO2-equivalents stored in the roundwood (about 2%). The findings from this study can be used to inform future decisions on processes in forestry that should be focused on when planning actions to reduce energy consumption and GHG emissions. Additionally, as roundwood timber is raw material for numerous products the results can be useful when preparing documentation of environmental impacts, such as environmental product declarations, which are increasingly demanded by the market.
Abstract
Traditional wood preservatives based on biocides are effective against wood-deteriorating organisms because of their toxicity. By contrast, modified woods are non-toxic by definition. To investigate the efficiency of various wood modifications, quantitative real-time polymerase chain reaction (qPCR) was used to profile the DNA amounts of the white-rot fungus Trametes versicolor (L.) [Lloyd strain CTB 863 A] during an 8-week-long growth period in treated Pinus sylvestris (L.) sapwood. The studied wood was modified by acetylation, furfurylation, and thermal treatment. The traditional wood preservatives bis-(N-cyclohexyldiazeniumdioxy)-copper (Cu-HDO) and chromated copper arsenate (CCA) were used as references, whereas untreated P. sylvestris (L.) sapwood served as a control. The maximum levels of fungal DNA in native wood occurred at the end of the experiment. For all wood treatments, the maximum fungal DNA level was recorded after an incubation period of 2 weeks, followed by a decline until the end of the trial. For the preservative-treated woods, Cu-HDO showed the lowest level of fungal DNA throughout the experiment, indicating that exploratory hyphal growth is limited owing to the phytotoxicity of the treatment. The other treatments did not inhibit the exploratory hyphal growth phase. We conclude that qPCR studies of hyphal growth patterns within wood should provide a powerful tool for evaluating and further optimizing new wood protection systems.
Authors
Antti Asikainen Karl Stampfer Bruce TalbotAbstract
Large volumes of spruce-dominated forests established on steep terrain are maturing in western Norway. The level of harvesting needed in utilising these forests calls for investments in cable yarding, processing and transport systems, and updated knowledge on the appropriate technology for Norwegian conditions. In the yarding-processing-truck transport operation, the processor cannot operate if the cable yarding system does not supply trees at a sufficient rate or when the buffer storage becomes full. As a result, the productivity of the whole system is often substantially lower than those of the individual parts in the system. Discrete-event simulation has been applied successfully in the analysis of a wide variety of wood harvesting and transport systems, where the productivities of different parts in the supply chain are interlinked .....
Authors
Stein Tomter Gro Hylen Jan-Erik Ørnelund NilsenAbstract
No abstract has been registered
Editors
Helmer BelboAbstract
The OSCAR network was formed in 2005 and includes five Nordic forest research institutes Metla (Finland), Mesäteho (Finland), Skogforsk (Sweden), Skov & Landskab (Denmark) and Skog og Landskap (Norway) and SILAVA (Latvia). The network is open for all relevant research bodies in the Nordic and Baltic countries. OSCAR is one of five virtual centres of advanced research financed by the Nordic Forest Research Cooperation Committee (SNS). The main target of OSCAR is increasing the excellence and critical mass of R&D within the field of forest operations research by integrating research resources and expertise, besides promoting and developing efficient, competitive and environmentally friendly forest operation systems on a joint Nordic basis....