Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

River otters (Lontra canadensis) are apex predators that bioaccumulate contaminants via their diet, potentially serving as biomonitors of watershed health. They reside throughout the Green-Duwamish River, WA (USA), a watershed encompassing an extreme urbanization gradient, including a US Superfund site slated for a 17-year remediation. The objectives of this study were to document baseline contaminant levels in river otters, assess otters’ utility as top trophic-level biomonitors of contaminant exposure, and evaluate the potential for health impacts on this species. We measured a suite of contaminants of concern, lipid content, nitrogen stable isotopes (δ15N), and microsatellite DNA markers in 69 otter scat samples collected from twelve sites. Landcover characteristics were used to group sampling sites into industrial (Superfund site), suburban, and rural development zones. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ether flame-retardants (PBDEs), dichlorodiphenyl-trichloroethane and its metabolites (DDTs), and polycyclic aromatic hydrocarbons (PAHs) increased significantly with increasing urbanization, and were best predicted by models that included development zone, suggesting that river otters are effective biomonitors, as defined in this study. Diet also played an important role, with lipid content, δ15N or both included in all best models. We recommend river otter scat be included in evaluating restoration efforts in this Superfund site, and as a potentially useful monitoring tool wherever otters are found. We also report ΣPCB and ΣPAH exposures among the highest published for wild river otters, with almost 70% of samples in the Superfund site exceeding established levels of concern.

To document See dataset

Abstract

Data compilation of groundwater chemistry and freshwater abstraction documents the importance of groundwater as an economical resource in the Nordic Region. Management of groundwater require chemical monitoring to minimize risks for contamination, and mitigation is needed to identify anthropogenic and geogenic hazards related to groundwater quality (Kitterød et al, 2022). The interaction between groundwater and surface water is crucial for important ecological systems in the Nordic Region, and the impacts of climate change is a big challenge for hydrological and environmental research. The increased net global energy influx has impact on average temperature, seasonality, precipitation, and runoff, but issues related to water quality and groundwater have received less attention. The interaction between surface water and groundwater chemistry is embraced in the term hydrogeochemistry. In this context the geological framework plays a cardinal role in combination with residence time of water in the subsurface. Extensive sampling of hydrogeochemical variables have been undertaken in the Nordic Region and results are made available in public databases. Such data deserve more attention from the research community, and a pertinent challenge is to include geochemical variables in water balance studies and regional hydrological modeling. Reference: Kitterød, N-O, Kværner, J., Aagaard, P, Arustienė, J, de Beer, H, Bikše, J, Dagestad, A, Gundersen, P, Hansen, B, Hjartarson, Á, Karro, E, Klavins, M, Marandi, A, Putys, P, Radienė, R, Retiķe, I, Rossi, P M, and Thorling, L: Hydrogeology and Groundwater Quality in the Nordic Region. Submitted to Hydrology Research, 2022. Keywords: Hydrogeochemsitry; groundwater quality; surface water quality.

To document

Abstract

Bioretention cells are popular stormwater management systems for controlling peak runoff and improving runoff water quality. A case study on a functional large-scale bioretention cell and a laboratory column experiment was conducted to evaluate the concentrations and retention efficiency of bioretention cells towards tire wear particles (TWP). The presence of TWP was observed in all soil fractions (<50 µm, 50–100 µm, 100–500 µm, and >500 µm) of the functional bioretention cell. TWP concentrations were higher (30.9 ± 4.1 mg/g) close to the inlet to the bioretention cell than 5 m away (19.8 ± 2.4 mg/g), demonstrating the influence of the bioretention cell design. The column experiment showed a high retention efficiency of TWP (99.6 ± 0.5%) in engineered soil consisting of sand, silty-sand, and garden waste compost. This study confirmed that bioretention cells built with engineered soil effectively retained TWP > 25 µm in size, demonstrating their potential as control measures along roads.

To document

Abstract

Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.

To document

Abstract

Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.

To document

Abstract

Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.