Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

Abstract

The effect of controlled nutrient feeding during the period of short day (SD) induction of flowering has been studied in three SD berry crops. An experimental system with standardized plant material grown with trickle fertigation in controlled environments was used. In strawberry, flowering was advanced and increased when an additional N pulse was given 1-2 weeks after commencement of a 4-week SD induction period, while the opposite resulted when the treatment was applied 2 weeks before start of SD. In blackcurrant, the highest flowering and yield were obtained when fertilization was applied shortly after the natural photoperiod had declined to the inductive length in September. While generous nutrient supply during spring and summer reduced berry soluble solids in blackcurrant, this was not observed with autumn fertilization. Autumn fertilization did not adversely affect plant winter survival or growth vigour in spring. Withdrawal of fertilization prior to, or at various stages during floral induction, did not significantly affect flowering and yield in raspberry, but marginally advanced flowering and fruit ripening.

Abstract

We examined the influence of fertigation on vegetative and generative parameters of strawberry plants (Fragaria × ananassa Duch.) and evaluated rapid analysing tools for N and K in leaf tissue. The experiments were undertaken in an open polytunnel on “table top” with ‘Sonata’ and ‘Korona’ grown in 2-L pots filled with a peat-based soil mixture. The experimental design was a randomized plot with three replications. Plants were fertigated with EC levels of 0.5, 1.0, 1.5 and 2.0 mS cm-1, based on two stock solutions of 7.5 kg YaraLiva™ Calcinit and 7.5 kg Kristalon™ Indigo, both dissolved in 100 L of water. Percentage N and K in leaves differed between analysing methods, cultivars, EC and date. We found interactions between the cultivar and EC level and between date and cultivar for N and K in leaf. Analysing NO3- by a photometric method (PM) in a lab, and by Laqua twin (LT), showed significant interaction with N% of leaf dry matter (DM) only for LT (r2=0.36). N% increased with higher EC level, more for ‘Korona’ than for ‘Sonata’. LT K+ did not correlate with K% (r2=0.014). The number of crowns and runners increased for both cultivars up to EC 1.5, while the number of leaves was unaffected. Petioles were the shortest at the lowest EC. Flower initiation was earlier at low EC in both cultivars. In the following spring, the time to flowering and first harvest was reduced with the decreasing EC. The number of flowers per plant increased up to EC 1.5, but dropped strongly at EC 2.0 for ‘Korona’, while ‘Sonata’ had a gradual increase of flowers with the increasing EC, but the number was only a third of ‘Korona’, except at EC 2.0, where the amount was equal for both cultivars. The conclusion can be drawn that LT correlated better than ChlDualex with N in strawberry leaves. However, r2 was only 0.36 indicating that LT NO3- is a coarse management tool. LT K+ was not a promising tool for rapid K+ test in these experiments. ‘Korona’ seemed to benefit of higher N levels for both vegetative growth and generative development than ‘Sonata’ up to EC 1.5, but ‘Sonata’ reached a higher floral primordia development stage in early October.

To document

Abstract

The project “Sustainable food production through quality optimized raw-material production and processing technologies for premium quality vegetable products and generated by-products” [SUNNIVA] aimed at the development of a sustainable food system from production to consumption, addressing the entire food supply chain for the vegetables tomato and Brassicae. The goal was better utilisation of the vegetable raw materials, reduced energy and water consumption, higher profitability and healthier food. This was achieved by providing various valorisation strategies to reduce waste and limiting environmental impact. Preservation of the intrinsic health-beneficial phytochemicals present in the raw material in order to improve the nutritional properties of vegetable food products was central in the project. The project contained optimization of harvest time and pre-processing storage conditions, development of novel mild processing design based on modelling, and a two-track valorisation strategy. SUNNIVA has demonstrated how the various residual raw materials can be exploited to the full: Either directly for sustainable production of healthy food (as a refined product or an ingredient), or indirectly by bringing it back into the food chain (as organic fertilizers and soil amendment products) in order to generate renewed primary production with minimal environmental impact.

To document

Abstract

Faba beans are highly nutritious because of their high protein content: they are a good source of mineral nutrients, vitamins, and numerous bioactive compounds. Equally important is the contribution of faba bean in maintaining the sustainability of agricultural systems, as it is highly efficient in the symbiotic fixation of atmospheric nitrogen. This article provides an overview of factors influencing faba bean yield and quality, and addresses the main biotic and abiotic constraints. It also reviews the factors relating to the availability of genetic material and the agronomic features of faba bean production that contribute to high yield and the improvement of European cropping systems. Emphasis is to the importance of using new high-yielding cultivars that are characterized by a high protein content, low antinutritional compound content, and resistance to biotic and abiotic stresses. New cultivars should combine several of these characteristics if an increased and more stable production of faba bean in specific agroecological zones is to be achieved. Considering that climate change is also gradually affecting many European regions, it is imperative to breed elite cultivars that feature a higher abiotic–biotic stress resistance and nutritional value than currently used cultivars. Improved agronomical practices for faba bean crops, such as crop establishment and plant density, fertilization and irrigation regime, weed, pest and disease management, harvesting time, and harvesting practices are also addressed, since they play a crucial role in both the production and quality of faba bean.

To document

Abstract

European pulse production faces a continued loss of cultivated area along with decreasing or stagnant yields. Vicia faba is a traditional legume with high genetic diversity cultivated in a wide range of European climates. Therefore V. faba is promising to identify stable and high yielding genotypes for specific target environments. The Nordic-Baltic region is challenging for legume growing due to short vegetation period and heat/drought stress in continental climates. Within the pan-European Eurolegume project a set of 18 V. faba accessions containing var. minor and major local landraces and modern cultivars of different geographical origin was evaluated in multi-environmental trials. The aim of this study was to identify ideotypes for Northern Europe and reveal key phenotypic traits conferring high yield potential and stability. Four target environmental clusters represented the range of Nordic growing conditions with yield levels from 128 gm−2 to 380 gm−2. Multivariate classification differentiated distinctive groups of var. minor and var. major accessions with few overlapping genotypes, the former having higher average yield, taller structure, more pods per node and longer flowering duration. Late sowing under long-day conditions above 55°N latitudes resulted in early flowering due to short vegetative development (650 °Cd). Extended flowering duration and tall stature were the most important traits conferring high yields. A negative trade-off between yield potential and yield stability was detected, with yield advantages of stress resistant genotypes only in a limited range of low yielding target environments (< 180 gm−2). The highest yielding accessions (Latvian var. minor landrace Bauska and var. major landrace Cēres) represented a favourable combination of yield potential and stability. High temperatures at flowering, within a range of average maximum July temperatures between 20.5–24.5 °C, were identified as most critical environmental variable depressing yield levels between 38.5 (var. major) and 56.2 (var. minor) gm−2 °C−1. It was concluded that Baltic landraces are promising ideotypes, with adapted flowering phenology and morphological structure, for increased V. faba yields in Nordic target environments.