Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Abstract
Agroforestry can be defined as sustainable and multifunctional land-use systems where trees are managed together with agricultural crops or livestock on the same piece of land. This definition fits with how the outfield has been managed in generations in Norway. The Norwegian outfields are a multifunctional land-use system. In the northern periphery area, agroforestry has a long history with woodland grazing, reindeer husbandry and gathering of different non-wood forest resources as herbs, mushrooms, and berries. Traditional agroforestry has gradually disappeared during the 20th century with the intensification of agriculture and forestry. Currently agroforestry systems are gaining new interest, not only from farmers but also from politicians, as this practice can possibly contribute to a more sustainable way of agricultural production. In the northern periphery area, the benefits of agroforestry practices can be manifold not only promoting traditional practices, but also novel systems with the use of new technology. In addition, agroforestry has environmental benefits as a method for conservation and enhancement of biodiversity, improved nutrient cycling, and water quality. Soil humus layer will also increase with several agroforestry systems leading to carbon sequestration. The Norwegian population of 5.3 mill populate an area of 323805 km2. The mainland of Norway is 323805 km2 while Svalbard and Jan Mayen represent 61022 and 377 km2, respectively. Number of persons per km2 are 14, however, as much as 82% of the Norwegian population inhabits cities/densely populated areas. These figures tell us that Norway have a large outfield with forests and mountains. The biggest owner of Norwegian outfield1 is the Norwegian state by the Ministry of Agriculture and Food. The state-owned enterprise Statskog SF is set to administer the property, that alone consist of about 23% of the total outfield-area of Norway. Almost 80% of the state-owned property is above the treeline and covers mountains and alpine grassland who are valuable grazing resources for reindeer herders and local farmers. Most of the forests are also used as grazing areas for local farmers and reindeer herders. The state-owned property in the southern Norway are managed as commons, where locals have rights in commons, typically this is right to graze, hunt and fish on the state ground. In the northern part of Norway, the grazing-rights are defined as user-rights and technically not rights in commons while the right to hunt, fish and gathering of berries and herbs etc. is an “all-mans-right”.
Abstract
No abstract has been registered
Authors
Darius KviklysAbstract
No abstract has been registered
Authors
Darius KviklysAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Jørgen A.B. Mølmann Sigridur Dalmannsdottir Anne Linn Hykkerud Timo Hytönen Amos Samkumar Laura JaakolaAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Linards Klavins Inessa Maaga Maris Bertins Anne Linn Hykkerud Katja Karppinen Česlovas Bobinas Heikki M. Salo Nga Nguyen Henriikka Salminen Karina Stankevica Maris KlavinsAbstract
No abstract has been registered
Abstract
Hydroponic production of strawberry (Fragaria × ananassa Duch.) in protected cultivation systems using substrates (growing media) is gaining popularity worldwide. Therefore, it is necessary to develop more sustainable growing media alternatives. This study focused on growth performance of strawberry plants grown in wood fibre from Norway spruce (Picea abies (L.) H. Karst.), in comparison to two industry standards (peat and coco fibres). Plug (tray) plants of the June-bearing strawberry cultivar 'Malling Centenary' and bare root (WBH) plants of cultivar 'Sonata' were transplanted into three different growing media: peat (80%) and perlite (20%) mixture, coconut coir (100%) and Norway spruce wood fibre (100%). The plants received four fertigation strategies (various potassium and nitrogen concentrations) from flowering onwards. Throughout the production season ripe berries were harvested and frozen for later analyses of chemical composition. Plant architecture was also recorded after termination of the experiment. The results revealed that the most significant differences among the majority of the fruit and plant parameters were due to cultivar traits. Strawberries grown in wood fibre produced slightly smaller berries with elevated °Brix and dry matter compared to berries from plants grown in peat and coir. This was most likely caused by the common fertigation strategy applied to all substrates. Nevertheless, among the tested fertigation strategies, application of solutions with elevated potassium resulted in the highest sugar accumulation in berries grown in wood fibre substrate. In general, the experiment revealed relatively negligible differences between the growing media, and we therefore conclude that wood fibre from Norway spruce may be a viable alternative as a growing media in hydroponic strawberry production when the fertigation strategy is precisely adjusted.
Abstract
No abstract has been registered