Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Mechanistic models are useful tools for understanding and taking account of the complex, dynamic processes such as carbon (C) and nitrogen (N) turnover in soil and crop growth. In this study, the EU-Rotate_N model was first calibrated with measured C and N mineralization from nine potential fertilizer resources decomposing at controlled soil temperature and moisture. The materials included seaweeds, wastes from the food industry, food waste anaerobically digested for biogas production, and animal manure. Then the model’s ability to predict soil and crop data in a field trial with broccoli and potato was evaluated. Except for seaweed, up to 68% of added C and 54–86% of added N was mineralized within 60 days under controlled conditions. The organic resources fell into three groups: seaweed, high-N industrial wastes, and materials with high initial content of mineral N. EU-Rotate_N was successfully calibrated for the materials of industrial origin, whereas seaweeds, anaerobically digested food waste and sheep manure were challenging. The model satisfactorily predicted dry matter (DM) and N contents (root mean square; RMSE: 0.11–0.32) of the above-ground part of broccoli fertilized with anaerobically digested food waste, shrimp shell pellets, sheep manure and mineral fertilizers but not algal meal. After adjusting critical %N for optimum growth, potato DM and N contents were also predicted quite well (RMSE: 0.08–0.44). In conclusion, the model can be used as a learning and decision support tool when using organic materials as N fertilizer, preferably in combination with other models and information from the literature.

To document

Abstract

Seed mixtures with a nurse grass that germinates quickly at low soil temperatures can be an option for faster establishment of Agrostis stolonifera (AS) putting greens after winter damage. From 2015 to 2018 Poa trivialis (PT) ‘Dark Horse’ and Lolium perenne (LP) ‘Chardin’ were evaluated as nurse grasses in comparison with pure AS ‘Independence’ at two experimental sites in each of the two major climatic zones of the Nordic countries. Poa annua (PA) ‘Two‐Putt’ was also included as a nurse grass in the northern zone. As an overall trend, establishment was faster with AS+LP than with AS+PT and AS+PA, which in turn had faster establishment than pure AS. In the northern zone, AS+PT produced better turf quality than pure AS in the seeding year and year after and tended to be superior even on average for the entire trial period (mean value 6.0 vs. 5.8 for pure AS, 5.3 for AS+LP, and 4.6 for AS+PA; scale 1–9 where 9 is the highest quality). In the same zone, AS+PT also suffered less overall winter damage than the other combinations and was less infected with microdochium patch than pure AS. In the southern zone, PT and especially LP were far more persistent than in the northern zone and compromised turfgrass quality compared with pure AS. In conclusion, we recommend PT as a nurse grass for faster establishment of AS putting in the northern zone, but not in the southern zone where AS should rather be seeded in a pure stand.

Abstract

Horticultural production systems are under pressure to find environmentally friendly growing media. Peat is currently the most popular substrate for fresh potted herbs production; however, this raw material is not sustainable due to the large amount of greenhouse gases released during its harvesting. Therefore, the goal of the study was to test the performance of various commercial wood fiber products and compare them with peat and coir in an ebb-and-flow production system with basil (Ocimum basilicum L. 'Marian'). Basil plants were grown in three different pot sizes (6, 9 and 12 cm in diameter) and under various fertigation regimes (EC 1, 2 and 3). Height and biomass of the plants were recorded when the best performing plants reached the commercial stage. The tallest plants and greatest biomass were produced in peat and coir, however, the results confirm that wood fiber can be a promising substrate alternative. Further research is needed to study, among others topics, how to modify some properties of wood fibers to fulfil their potential as a replacement for non-sustainable growing media in production of herbs in pots.

To document

Abstract

Greenhouses are complex systems whose size, shape, construction material, and equipment for climate control, lighting and heating can vary largely. The greenhouse design can, together with the outdoor weather conditions, have a large impact on the economic performance and the environmental consequences of the production. The aim of this study was to identify a greenhouse design out of several feasible designs that generated the highest net financial return (NFR) and lowest energy use for seasonal tomato production across Norway. A model-based greenhouse design method, which includes a module for greenhouse indoor climate, a crop growth module for yield prediction, and an economic module, was applied to predict the NFR and energy use. Observed indoor climate and tomato yield were predicted using the climate and growth modules in a commercial greenhouse in southwestern Norway (SW) with rail and grow heating pipes, glass cover, energy screens, and CO2-enrichment. Subsequently, the NFR and fossil fuel use of five combinations of these elements relevant to Norwegian conditions were determined for four locations: Kise in eastern Norway (E), Mære in midwestern Norway (MW), Orre in southwestern Norway (SW) and Tromsø in northern Norway (N). Across designs and locations, the highest NFR was 47.6 NOK m−2 for the greenhouse design with a night energy screen. The greenhouse design with day and night energy screens, fogging and mechanical cooling and heating having the lowest fossil energy used per m2 in all locations had an NFR of −94.8 NOK m−2. The model can be adapted for different climatic conditions using a variation in the design elements. The study is useful at the practical and policy level since it combines the economic module with the environmental impact to measure CO2 emissions.