Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

To document

Abstract

Transport and turnover of dissolved organic carbon (DOC) is important in the C cycle of organic soils. The concentration of DOC in soil water is buffered by adsorption to the soil matrix, and has been hypothesized to depend on the pool size of adsorbed DOC. We have studied the effect of frequent artificial excessive leaching events on concentration and flux of DOC in shallow, organic rich mountain soils. Assuming a constant Kd value for DOC adsorption to the soil matrix, we used these data to assess the change in the pool of adsorbed (or potential) DOC in the soil. The study involved manipulation of precipitation amount and frequency in summer and autumn in small, heathland catchments at Storgama, southern Norway. The shallow soils (16-34 cm deep on average) limit the possibility for changes in water flow paths during events. The mini-catchments range in size from 75 to 98 m(2). Our data show that after leaching of about 1.2 g DOC m(-2) the DOC concentration in runoff declines by approximately 50%. From this we conclude that the pool size of adsorbed potential DOC in the shallow soils at any time is of the order 2-3 g m(-2). Frequent episodes suggest that the replenishment rate, which depends on the decomposition rate of soil organic matter, is fast and the potential DOC pool could be fully restored probably within days during summer, but with some more time required in autumn, due to lower temperatures. Both pool size of potential DOC and replenishment rate are seasonally dependent. The pool of potential DOC, and thus the DOC concentration in discharge, is at their maximum in the growing season. However, under non-leaching conditions, the concentration of DOC in soil water and thus the pool size of potential DOC seems to level off, possibly due to conversion of DOC to less reversibly bound forms, or to further decomposition to CO2.

To document

Abstract

Side effects related to liming have been studied in four dimictic lakes (553-642 ma.s.l.; 59 degrees 57'N) in Finnemarka, a forested area in Southern Norway with poor catchment buffer capacity. Data series from lake profiles have been sampled two decades apart; 10 years prior to liming and after 10 years of liming. Water samples were collected during spring after ice breakup and during summer after the development of thermal stratification. Before liming, there were very low concentrations of bicarbonate (HCO3-; or alkalinity) in the lakes. After 10 years of liming, up to 90% of the ions in hypolimnion originate from lime products. Hence, liming strengthened the chemical stratification and increased the vertical stability. Differences in chemocline developments between lakes were explained by differences in physical properties, i.e. their depth/surface area ratio. The chemocline developments lead to increased concentrations of organic matter in the hypolimnion with a subsequent reduction in oxygen concentrations. Lime additions during late spring, as an alternative to early autumn, lead to pronounced anoxic conditions in the hypolimnion.

To document

Abstract

Soil biological properties and CO 2 emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO 2 fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO 2 emission

To document

Abstract

The Hungarian Detailed Soil Hydrophysical Database, called MARTHA ver2.0 has been developed to collect information on measured soil hydraulic and physical characteristics in Hungary. Recently this is the largest detailed national hydrophysical database, containing controlled information from a total of 15,005 soil horizons. Two commonly used pedotransfer functions were tested to evaluate the accuracy of the predictions on the MARTHA data set, representative for Hungarian soils. In general, the application of both examined pedotransfer functions (Rajkai, 1988; Wösten et al., 1999) was not very successful, because these PTFs are representative for other soil groups. The classification tree method was used to evaluate the effect of soil structure on the goodness of estimations. It was found that using the soil structure data the inaccuracies of soil water retention predictions are more explainable and the structure may serve as a grouping variable for the development of class PTFs.

Abstract

This work discusses the potential routes of transport, possible occurrence and predicted fate of parasite eggs corresponding to human pathogens in on-site wastewater treatment systems with Light Weight Aggregates (LWA) media. The discussion is mainly based on scientific evidences supported by practical outcomes derived from a survey of helminth eggs in the specific LWA materials-typical filter media of constructed wetlands (CWs) treating domestic wastewater in Norway. The scientific evidences showed that the greatest reduction in the egg concentrations occurs in septic tanks. The eggs that could pass through the tank trap can be accumulated and effectively eliminated in the filter media of CWs. The practical outcomes did not show any accumulation and the consequent contamination of the LWA media with helminth eggs. Because the outcomes characterised a survey that was carried out for the first time ever on the above-specified filter media and was not replicated, the absence of parasite eggs in the CW filters cannot be definitely stated. However, it could be theoretically assumed that the possibility of finding human parasite eggs originated from domestic wastewater in the LWA filters should be negligible.