Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Chapter 6 provides a summary of research findings from the case studies in India that showed significant benefits of another climate-smart rice system, namely the direct seeded rice (DSR), which shows positive outcomes compared to puddled transplanted rice in terms of (i) higher water productivity, (ii) reduction in labour and production costs, and (iii) lower methane emissions. However, there are some challenges for adopting DSR which include poor weed control, need for specific water and nutrient management, availability of suitable varieties for DSR, increased damage by soil pathogens and nutrient disorders, especially N and micronutrients. Possible solutions to overcome these challenges that will make it easier for adoption by farmers will be analysed in this chapter. Field data/evidence from India and other previous studies under both dry and wet conditions were presented to support the solutions. The options for scaling up DSR combined by need-based farmer trainings, accessibility to good quality seeds, availability and use of drum seeders and selective herbicides were discussed.

To document

Abstract

In Chapter 2, the authors focus on the importance of precision-based soil and nutrient management practices tested on rice farms in the eastern part of India and the potential for reducing GHG emissions. This is highly relevant for countries such as India, Vietnam, Myanmar, Bangladesh, and Thailand with large areas under rice production, where the use of excess amounts of fertilizer and chemicals, especially nitrogen fertilizer, is a serious problem for the environment and health of people. The chapter shows the importance and benefits from the use of tools ranging from the simple leaf colour chart to innovative digital tools and their relevance to improve nutrient use efficiency. The chapter towards the end provides guidelines/models and policy recommendations for upscaling precision soil and nutrient management in rice systems and other related food crops.

To document

Abstract

Giant panda could have bamboo as their exclusive diet for about 2 million years because of the contribution of numerous enzymes produced by their gut bacteria, for instance laccases. Laccases are blue multi-copper oxidases that catalyze the oxidation of a broad spectrum of phenolic and aromatic compounds with water as the only byproduct. As a “green enzyme,” laccases have potential in industrial applications, for example, when dealing with degradation of recalcitrant biopolymers, such as lignin. In the current study, a bacterial laccase, Lac51, originating from Pseudomonas putida and identified in the gut microbiome of the giant panda’s gut was transiently expressed in the non-food plant Nicotiana benthamiana and characterized. Our results show that recombinant Lac51 exhibits bacterial laccase properties, with optimal pH and temperature at 7–8 and 40°C, respectively, when using syringaldazine as substrate. Moreover, we demonstrate the functional capability of the plant expressed Lac51 to oxidize lignin using selected lignin monomers that serve as substrates of Lac51. In summary, our study demonstrates the potential of green and non-food plants as a viable enzyme production platform for bacterial laccases. This result enriches our understanding of plant-made enzymes, as, to our knowledge, Lac51 is the first functional recombinant laccase produced in plants.

Abstract

In Norway, the effect of drainage on grassland yields has received little attention for decades. Low level of drainage may be a reason for low grassland production. Therefore, a drainage experiment was established in a western Norwegian ley, on a sandy silt soil with a high capacity for water storage. The plots had six and twelve meters drain spacing, as well as undrained. There were two or three cuts, and fertilization of 190 or 290 kg N yr-1 ha-1. Drainage intensity gave a small significant increase in yield. N loss in drainage water increased with drainage intensity. The yield increase is likely too small to justify drainage, but the intervention might still be worthwhile due to increased N efficiency and a more manageable risk of compaction. A precise quantification of the hydrological effects is hard due to inherent soil variability.

Abstract

In Norway, the effect of drainage on grassland yields has received little attention for decades. Low levels of drainage may be a reason for low grassland production. Therefore, a drainage experiment was established in a western Norwegian ley, on a sandy silt soil with a high capacity for water storage. The plots had six- and twelve-metres drain spacing, as well as an undrained treatment. For each drainage treatment there were two or three cuts per year, and fertilization of 190 or 290 kg N yr-1 ha-1. Drainage intensity gave a small significant increase in yield. N loss in drainage water increased with drainage intensity. The small herbage yield increase is unlikely by itself to justify drainage, but the drainage installation might still be worthwhile due to increased N efficiency and a more manageable risk of compaction. Precise quantification of the hydrological effects is hard to make due to the inherent soil variability.

2021

Abstract

This study describes microbial and chemical source tracking approaches for water pollution in rural and urban catchments. Culturable faecal indicator bacteria, represented by Escherichia coli, were quantified. Microbial source tracking (MST) using host-specific DNA markers was applied to identify the origins of faecal contamination. Chemical source tracking (CST) was conducted to determine contaminants of emerging concern (CEC) of human/anthropogenic origin, including pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs). In addition, the eutrophication-causing macronutrients nitrogen and phosphorus were studied. MST tests revealed both anthropogenic and zoogenic faecal origins, with a dominance of human sources in the urban stream; non-human/environmental sources were prevalent in the rural creek. CST analyses revealed a higher number of CECs in the urban stream than in the rural watercourse. Positive correlations between PPCPs and both E. coli and the human DNA marker were uncovered in the urban stream, while in the rural creek, PPCPs were only highly correlated with the anthropogenic marker. Interestingly, macronutrients were strongly associated with primary faecal pollution origins in both watercourses. This correlation pattern determines the main pollutant contributors (anthropogenic or zoogenic) to eutrophication.