Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2011

To document

Abstract

In recent years the harmonization of methods in the frame of the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) operating under the UNECE Convention on Long-range Transboundary Air Pollution (CLRTAP) has been intensified. Among the C-actions of the FutMon project (LIFE07 ENV/D/000218; 2009-2010) the C1-Dep-22(SI) action was established with the goal to harmonize and develop the deposition monitoring procedures and sampling methods. The sampling equipment, spatial design of sampling plots and sampling frequency throughout Europe vary considerably. Therefore a step-by-step approach was made where the harmonized sampling equipment was developed and tested first. The selected collectors were installed at one observation plot of each participating country where measurements of throughfall and bulk deposition were run in parallel with the national collectors for a period of one year. To evaluate the agreement between methods, different statistical analyses were used including Altman-Bland plots, model II regression, and repeated measures ANOVA. Preliminary results from the “Intensive forest ecosystem monitoring plot” plot Brdo in NW Slovenia show a good agreement between national and harmonized bulk (both funnel-type) collectors, while comparison of throughfall measurements indicates systematic bias between harmonized (funnel-type) and national (gutter-type) collectors.

To document

Abstract

We used two datasets of 14C analyses of archived soil samples to study carbon turnover in O horizons from spruce dominated old-growth stands on well-drained podzols in Scandinavia. The main data set was obtained from archived samples from the National Forest Soil Inventory in Sweden and represents a climatic gradient in temperature. Composite samples from 1966, 1972, 1983 and 2000 from four different regions in a latitude gradient ranging from 57 to 67º N were analysed for 14C content. Along this gradient the C stock in the O horizon ranges from 2.1 kg m-2 in the north to 3.7 kg m-2 in the southwest. The other data set contains 14C analyses from 1986, 1987, 1991, 1996 and 2004 from the O horizons in Birkenes, Norway. Mean residence times (MRT) were calculated using a two compartment model, with a litter decomposition compartment using mass loss data from the literature for the threefirst years of decomposition and a humus decomposition compartment with a fitted constant turnover rate. We hypothesized that the climatic gradient would result in different C turnover in different parts of the country between northern and southern Sweden. The use of archived soil samples was very valuable for constraining the MRT calculations, which showed that there were differences between the regions. Longest MRT was found in the northernmost region (41 years), with decreasing residence times through the middle (36 years) and central Sweden (28 years), then again increasing in the southwestern region (40 years). The size of the soil organic carbon (SOC) pool in the O horizon was mainly related to differences in litter input and to a lesser degree to MRT. Because N deposition leads both to larger litter input and to longer MRT, we suggest that N deposition contributes significantly to the latitudinal SOC gradient in Scandinavia, with approximately twice as much SOC in the O horizon in the south compared to the north. The data from Birkenes was in good agreement with the Swedish dataset with MRT estimated to 34 years.

2010

Abstract

A second Working Ring Test (WRT) was organised within the framework of the EU/Life+ FutMon Project (`Further Development and Implementation of an EU-level Forest Monitoring System`, LIFE07 ENV/D/000218), to evaluate the overall performance of the laboratories responsible for analysing atmospheric deposition and soil solution samples in European forests, and to verify improvements in the analytical quality resulting from the QA/QC work carried out in the laboratories which participated in previous WRTs organized in the framework of the UN/ECE ICP Forests Monitoring Programme. The WRT was carried out in accordance with International ISO and ILAG guide proficiency test both for sample preparation and numerical elaboration of the results. Five natural atmospheric deposition and soil solution samples and 3 synthetic solutions were distributed to 42 laboratories for analysis using their routine methods for the following variables: pH, conductivity, calcium, magnesium, sodium, potassium, ammonium, sulphate, nitrate, chloride, total alkalinity, total dissolved nitrogen (TDN), dissolved organic carbon (DOC). Two tolerable limits were defined for each variable on the basis of the measured value, the results of previous WRTs, a comparison with the Data Quality Objectives of other international networks, and the importance of the variable in deposition and soil solution monitoring. In the ring test 12% of the results from all the laboratories did not fall within the tolerable limits. This enabled us to identify those variables and laboratories for which improvements in analytical performance are required. The results of the exercise clearly show that the use of data check procedures, as described in the ICP Forests manual for sampling and analysis of atmospheric deposition, makes it possible to detect the presence of inaccurate or outlying results, and would therefore greatly improve the overall performance of the laboratories. A discussion of the improvement of the results in this WRT compared to the previous WRTs is also included, showing a relevant improvent for several variables and underlining the importance of participating to these exercises for the overall analytical quality of the monitoring network.