Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

1. Spatial resources accessible for the derivation of biodiversity indicators of the class ecosystem structure are sparse and disparate, and their integration into computer algorithms for biodiversity monitoring remains problematic. We describe ecochange as an R-package that integrates spatial analyses with a monitoring workflow for computing routines necessary for biodiversity monitoring. 2. The ecochange comprises three modules for data integration, statistical analysis and graphics. The first module currently downloads and integrates diverse remote sensing products belonging to the essential biodiversity class of structure. The module for statistical analysis calculates RasterStack ecosystem-change representations across areas of interest; this module also allows focusing on species habitats while deriving changes in a variety of indicators, including ecosystem areas, conditional entropy and fractal dimension indices. The graphics module produces level and bar plots that ease the development of indicator reports. 3. Its functionality is described with an example workflow to calculate ecosystem-class areas and conditional entropy across an area of interest contained in the package documentation. 4. We conclude that ecochange features procedures necessary to derive ecosystem structure indicators integrating the retrieval of spatially explicit data with the use of workflows to calculate/visualize biodiversity indicators at the national/regional scales.

Til dokument

Sammendrag

The species composition of benthic algae changes as water phosphorus concentrations increase, and these changes can be used for ecological status assessment according to the Water Framework Directive. Natural background phosphorus concentrations in rivers and streams that are unaffected by anthropogenic impacts are usually low. Running waters draining catchments with deposits of marine clay, however, may have enhanced phosphorus concentrations, because the clay is naturally rich in apatite. Almost all clay rich areas have been cultivated for centuries, however, and fertilization has increased the soil phosphorus levels. It has, therefore, been difficult to disentangle natural from anthropogenically enhanced phosphorus in streams draining clay rich areas. We compared water phosphorus concentrations, and the Periphyton Index of Trophic Status PIT, between clay and non-clay, impacted and unimpacted rivers in Norway. We found that water phosphorus concentrations and the PIT index were higher in unimpacted clay rivers than in unimpacted non-clay rivers, indicating that natural phosphorus concentrations in clay rivers are indeed enhanced compared to rivers without deposits of marine clay. In addition, phosphate-P contributed 18–23% to total phosphorus in unimpacted clay rivers, but 33–37% in unimpacted and impacted non-clay rivers and clay rivers affected by agriculture. This indicates that the total phosphorus in unimpacted clay rivers is less bioavailable than in non-clay rivers and in impacted clay rivers. Water total phosphorus concentrations in unimpacted clay rivers significantly increased with catchment clay cover. Based on these findings, we derived new status class boundaries for the PIT index in clay rivers. Clay rivers are suggested to be assessed in only two status classes, i.e., “good or better” or “moderate or worse”, respectively. The good/moderate status class boundary for the PIT index was shown to increase with increasing catchment clay cover.

Sammendrag

Join us on the dog sled! Immerse yourself in the beauty of Norwegian snow plains while you learn how to choose the right dog for the right task in the sled team and much more. The material was prepared for the project EDU-ARCTIC 2: from polar research to scientific passion – innovative nature education in Poland and Norway, which receives a grant of ca. 240 000 EUR received from Iceland, Liechtenstein and Norway under EEA funds. View with VR goggles or look around by moving your smartphone or by dragging the image left and right with the mouse.