Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

Background The order Lepidoptera has an abundance of species, including both agriculturally beneficial and detrimental insects. Molecular data has been used to investigate the phylogenetic relationships of major subdivisions in Lepidoptera, which has enhanced our understanding of the evolutionary relationships at the family and superfamily levels. However, the phylogenetic placement of many superfamilies and/or families in this order is still unknown. In this study, we determine the systematic status of the family Argyresthiidae within Lepidoptera and explore its phylogenetic affinities and implications for the evolution of the order. We describe the first mitochondrial (mt) genome from a member of Argyresthiidae, the apple fruit moth Argyresthia conjugella. The insect is an important pest on apples in Fennoscandia, as it switches hosts when the main host fails to produce crops. Results The mt genome of A. conjugella contains 16,044 bp and encodes all 37 genes commonly found in insect mt genomes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and a large control region (1101 bp). The nucleotide composition was extremely AT-rich (82%). All detected PCGs (13) began with an ATN codon and terminated with a TAA stop codon, except the start codon in cox1 is ATT. All 22 tRNAs had cloverleaf secondary structures, except trnS1, where one of the dihydrouridine (DHU) arms is missing, reflecting potential differences in gene expression. When compared to the mt genomes of 507 other Lepidoptera representing 18 superfamilies and 42 families, phylogenomic analyses found that A. conjugella had the closest relationship with the Plutellidae family (Yponomeutoidea-super family). We also detected a sister relationship between Yponomeutoidea and the superfamily Tineidae. Conclusions Our results underline the potential importance of mt genomes in comparative genomic analyses of Lepidoptera species and provide valuable evolutionary insight across the tree of Lepidoptera species.

Til dokument

Sammendrag

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces “ScabyNet”, an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.

Sammendrag

Climate change is already reducing carbon sequestration in Central European forests dramatically through extensive droughts and bark beetle outbreaks. Further warming may threaten the enormous carbon reservoirs in the boreal forests in northern Europe unless disturbance risks can be reduced by adaptive forest management. The European spruce bark beetle (Ips typographus) is a major natural disturbance agent in spruce-dominated forests and can overwhelm the defences of healthy trees through pheromone-coordinated mass-attacks. We used an extensive dataset of bark beetle trap counts to quantify how climatic and management-related factors influence bark beetle population sizes in boreal forests. Trap data were collected during a period without outbreaks and can thus identify mechanisms that drive populations towards outbreak thresholds. The most significant predictors of bark beetle population size were the volume of mature spruce, the extent of newly exposed clearcut edges, temperature and soil moisture. For clearcut edge, temperature and soil moisture, a 3-year time lag produced the best model fit. We demonstrate how a model incorporating the most significant predictors, with a time lag, can be a useful management tool by allowing spatial prediction of future beetle population sizes. Synthesis and Applications: Some of the population drivers identified here, i,e., spruce volume and clearcut edges, can be targeted by adaptive management measures to reduce the risk of future bark beetle outbreaks. Implementing such measures may help preserve future carbon sequestration of European boreal forests.

2023

Sammendrag

A major challenge for plants in a rapidly changing climate is to adapt to rising temperatures. Some plants adapt to temperature conditions by generating an epigenetic memory that can be transmitted both meiotically and mitotically. Such epigenetic memories may increase phenotypic variation to global warming and provide time for adaptation to occur through classical genetic selection. The goal of this study was to understand how warmer temperature conditions experienced during sexual and asexual reproduction affect the transcriptomes of different strawberry (Fragaria vesca) ecotypes. We let four European F. vesca ecotypes reproduce at two contrasting temperatures (18 and 28°C), either asexually through stolon formation for several generations, or sexually by seeds (achenes). We then analyzed the transcriptome of unfolding leaves, with emphasis on differential expression of genes belonging to the epigenetic machinery. For asexually reproduced plants we found a general transcriptomic response to temperature conditions but for sexually reproduced plants we found less significant responses. We predicted several splicing isoforms for important genes (e.g. a SOC1, LHY, and SVP homolog), and found significantly more differentially presented splicing event variants following asexual vs. sexual reproduction. This difference could be due to the stochastic character of recombination during meiosis or to differential creation or erasure of epigenetic marks during embryogenesis and seed development. Strikingly, very few differentially expressed genes were shared between ecotypes, perhaps because ecotypes differ greatly both genetically and epigenetically. Genes related to the epigenetic machinery were predominantly upregulated at 28°C during asexual reproduction but downregulated after sexual reproduction, indicating that temperature-induced change affects the epigenetic machinery differently during the two types of reproduction.