Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

An epigenetic memory of the temperature sum experienced during embryogenesis is part of the climatic adaptation strategy of the long-lived gymnosperm Norway spruce. This memory has a lasting effect on the timing of bud phenology and frost tolerance in the resulting epitype trees. The epigenetic memory is well characterized phenotypically and at the transcriptome level, but to what extent DNA methylation changes are involved have not previously been determined. To address this, we analyzed somatic epitype embryos of Norway spruce clones produced at contrasting epitype-inducing conditions (18 and 28°C). We screened for differential DNA methylation in 2744 genes related mainly to the epigenetic machinery, circadian clock, and phenology. Of these genes, 68% displayed differential DNA methylation patterns between contrasting epitype embryos in at least one methylation context (CpG, CHG, CHH). Several genes related to the epigenetic machinery (e.g., DNA methyltransferases, ARGONAUTE) and the control of bud phenology (FTL genes) were differentially methylated. This indicates that the epitype-inducing temperature conditions induce an epigenetic memory involving specific DNA methylation changes in Norway spruce.

To document

Abstract

The management of infectious wildlife diseases often involves tackling pathogens that infect multiple host species. Chronic wasting disease (CWD) is aprion disease that can infect most cervid species. CWD was detected in reindeer (Rangifer tarandus) in Norway in 2016. Sympatric populations of red deer(Cervus elaphus) and moose (Alces alces) are at immediate risk. However, the estimation of spillover risk across species and implementation of multispecies management policies are rarely addressed for wildlife. Here, we estimated the broad risk of CWD spillover from reindeer to red deer and moose by quantifying the probability of co-occurrence based on both (1) population density and(2) habitat niche overlap from GPS data of all three species in Nordfjella,Norway. We describe the practical challenges faced when aiming to reduce the risk of spillover through a marked reduction in the population densities of moose and red deer using recreational hunters. This involves setting the popu-lation and harvest aims with uncertain information and how to achieve them.The niche overlap between reindeer and both moose and red deer was low overall but occurred seasonally. Migratory red deer had a moderate niche over-lap with the CWD-infected reindeer population during the calving period, whereas moose had a moderate niche overlap during both calving and winter. Incorporating both habitat overlap and the population densities of the respective species into the quantification of co-occurrence allowed for more spatially targeted risk maps. An initial aim of a 50% reduction in abundance for the Nordfjella region was set, but only a moderate population decrease of less than 20% from 2016 to 2021 was achieved. Proactive management in the form of marked population reduction is invasive and unpopular when involving species of high societal value, and targeting efforts to zones with a high risk ofspillover to limit adverse impacts and achieve wider societal acceptance is important. disease management, host range, moose, multihost pathogens, niche overlap, Norway,population estimation, red deer, reindeer

To document

Abstract

Northern forest ecosystems make up an important part of the global carbon cycle. Hence, monitoring local-scale gross primary production (GPP) of Northern forest is essential for understanding climatic change impacts on terrestrial carbon sequestration and for assessing and planning management practices. Here we evaluate and compare four methods for estimating GPP using Sentinel-2 data in order to improve current available GPP estimates: four empirical regression models based on either the 2-band Enhanced Vegetation Index (EVI2) or the plant phenology index (PPI), an asymptotic light response function (LRF) model, and a light-use efficiency (LUE) model using the MOD1732 algorithm. These approaches were based on remote sensing vegetation indices, air temperature (Tair), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). The models were parametrized and evaluated using in-situ data from eleven forest sites in North Europe, covering two common forest types, evergreen needleleaf forest and deciduous broadleaf forest. Most of the models gave good agreement with eddy covariance-derived GPP. The VI-based regression models performed well in evergreen needleleaf forest (R2 = 0.69–0.78, RMSE = 1.97–2.28 g C m−2 d−1, and NRMSE =9-11.0%, eight sites), whereas the LRF and MOD17 performed slightly worse (R2 = 0.65 and 0.57, RMSE = 2.49 and 2.72 g C m−2 d−1, NRMSE = 12 and 13.0%, respectively). In deciduous broadleaf forest all models, except the LRF, showed close agreements with the observed GPP (R2 = 0.75–0.80, RMSE = 2.23–2.46 g C m−2 d−1, NRMSE = 11–12%, three sites). For the LRF model, R2 = 0.57, RMSE = 3.21 g C m−2 d−1, NRMSE = 16%. The results highlighted the necessity of improved models in evergreen needleleaf forest where the LUE approach gave poorer results., The simplest regression model using only PPI performed well beside more complex models, suggesting PPI to be a process indicator directly linked with GPP. All models were able to capture the seasonal dynamics of GPP well, but underestimation of the growing season peaks were a common issue. The LRF was the only model tending to overestimate GPP. Estimation of interannual variability in cumulative GPP was less accurate than the single-year models and will need further development. In general, all models performed well on local scale and demonstrated their feasibility for upscaling GPP in northern forest ecosystems using Sentinel-2 data.

To document

Abstract

To reduce the dependency of fungicides in treating turf grass diseases we investigated the use of biostimulants and colour pigments and their capacity to prevent the proliferation of microdochium and anthracnose on annual meadow grass (Poa annua). The study was conducted in two sites (Landvik, Norway and Bingley, United Kingdom) for two years (May 2020 – May 2022). The biostimulant Hicure could reduce the fungicidal use from three to two without loss of efficiency in treating the fungal diseases. The biostimulant also preserved the visual quality of the turf grasses when reducing the fungicidal treatment from three to two. The colour pigment Ryder in all treatments was effective at increasing the colour intensity of the turf grasses compared to the control. Additionally, the biostimulant treatments could treat anthracnose better than the fungicidal only treatment. The biostimulant Hicure and the colour pigment Ryder have potential for further research and development to reduce the use of fungicides while simultaneously preserving the pristine quality of turf grasses in golf greens.

To document

Abstract

Soil degradation is a serious environmental issue in many regions of the world, and Sri Lanka is not an exception. Maha Oya River Basin (MORB) is one of the major river basins in tropical Sri Lanka, which suffers from regular soil erosion and degradation. The current study was designed to estimate the soil erosion associated with land use changes of the MORB. The Revised Universal Soil Loss Equation (RUSLE) was used in calculating the annual soil erosion rates, while the Geographic Information System (GIS) was used in mapping the spatial variations of the soil erosion hazard over a 30-year period. Thereafter, soil erosion hotspots in the MORB were also identified. The results of this study revealed that the mean average soil loss from the MORB has substantially increased from 2.81 t ha−1 yr−1 in 1989 to 3.21 t ha−1 yr−1 in 2021, which is an increment of about 14.23%. An extremely critical soil erosion-prone locations (average annual soil loss > 60 t ha−1 yr−1) map of the MORB was developed for the year 2021. The severity classes revealed that approximately 4.61% and 6.11% of the study area were in high to extremely high erosion hazard classes in 1989 and 2021, respectively. Based on the results, it was found that the extreme soil erosion occurs when forests and vegetation land are converted into agricultural and bare land/farmland. The spatial analysis further reveals that erosion-prone soil types, steep slope areas, and reduced forest/vegetation cover in hilly mountain areas contributed to the high soil erosion risk (16.56 to 91.01 t ha−1 yr−1) of the MORB. These high soil erosional areas should be prioritized according to the severity classes, and appropriate land use/land cover (LU/LC) management and water conservation practices should be implemented as recommended by this study to restore degraded lands.

To document

Abstract

1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions.