Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

2023

To document

Abstract

This study applied comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) for the analysis of 100 pesticides (77 organophosphorus and 23 organochlorines) in six typical plant matrices with high protein, starch, acid, or oil content. Different sorbents were evaluated in the clean-up step of the QuEChERS method, and optimized sorbent combinations were obtained for each individual matrix. Good linearity of the calibration curves of matrix-matched was obtained (R2 ≥ 0.9853). The mean recoveries and relative standard deviations at fortification levels of 10 and 50 μg/kg ranged from 72.6 to 117.5 and 0.1 to 19.9%, respectively. Phenolic antioxidants, glycosides, phosphorus esters, linoleic acid, unsaturated fatty acids, and other interferences in the individual plant matrix were identified. The results demonstrated that GC × GC-TOF-MS is helpful in the separation of the co-eluted pesticides and the identification of interferences in complex plant matrices.

Abstract

In the Nordic countries, ice encasement of golf greens and agricultural grass fields under sunlight heat often leads to grass death due to oxygen depletion and accumulation of carbon dioxide and metabolites from anaerobic respiration under the ice layer. The phenomenon is termed ‘isbrann’ in Norwegian and it is a severe type of winter damage that may also affect germination and growth after reseeding. We have employed soil water metabolome analyses to differentiate and identify small, water-soluble metabolites produced in ice-encased grass for a better understanding of how ice and anoxic soils might affect grass plants.

Abstract

To ensure compliance with food safety regulations, monitoring programs and reliable analytical methods to detect relevant chemical pollutants in food and the environment are key instruments. Pesticides are an important part of pest management in agriculture to sustain and increase crop yields and control post-harvest decay, while pesticide residues in food may pose a risk to human health. Thus, the levels of pesticide residues in food must be controlled and should align with Maximum Residue Levels regulations to ensure food safety. Food safety monitoring programs and analytical methods for pesticide residues and metabolites are well developed. Future developments to ensure food safety must include the increased awareness and improved regulatory framework to meet the challenges with natural toxins, emerging contaminants, novel biopesticides, and antimicrobial resistance in food and the environment. The reality of a complex mixture of pollutants, natural toxins, and their metabolites potentially occurring in food and the environment implies the necessity to consider combined effects of chemicals in risk assessment. Here, we present challenges, monitoring efforts, and future perspectives for chemical food safety focused on the importance of current developments in high-resolution mass spectrometry (HRMS) technologies to meet the needs in food safety and environmental monitoring.

Abstract

Oat harvested from plants infested with plant pathogenic fungi within the Fusarium head blight (FHB) complex may sometimes contain high levels of mycotoxins, which makes the grain unsuitable for food and feed. Fusarium graminearum, a deoxynivalenol (DON) producer, and Fusarium langsethiae, a T-2 toxin (T2) and HT-2 toxin (HT2) producer, are commonly occurring in Norwegian oats. We have analysed grains of Nordic oat varieties and breeding lines for the content of mycotoxins and DNA of Fusarium species belonging to the FHB disease complex (Hofgaard et al. 2022). The grains were harvested from field trials located in South-East Norway in the years 2011-2020. The ranking of oat varieties according to HT2+T2 levels corresponded with the ranking according to the DNA levels of F. langsethiae. However, this ranking did not resemble the ranking for DON and F. graminearum DNA. Our results implies that a moderate resistance to DON producers does not guarantee a moderate resistance to HT2+T2 producers. Separate tests are therefore necessary to determine the resistance towards DON and HT2+T2 producers in oats. This creates practical challenges for the screening of FHB resistance in oats as todays’ screening focuses on resistance to F. graminearum and DON. We identified oat varieties with generally low levels of both mycotoxins and FHB pathogens which should be promoted to mitigate mycotoxin risk in Norwegian oats.