Context

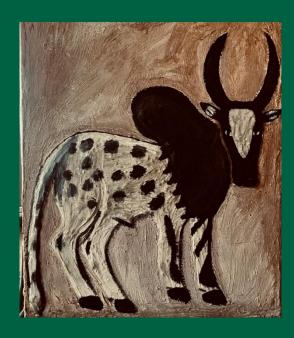
- Ethiopia suffers from some of the highest rates of soil erosion and land degradation worldwide.
- Climate change is projected to exacerbate this.
- Livestock is crucial for livelihoods and the economy but relies heavily on overgrazed natural pastures and contributes to land degradation.
- Consequently, our study aims to develop **integrated** grassland-cropping systems to address this challenge by enhancing livestock feed provision, simultaneously improving soil quality, and subsequently increasing food crop production.

Grass-legume experiments in 2 AEZs

- Greenhouse experiment: Microbial functions and soil nutrient turnover
- **On-station trials:** effects on soil quality, carbon storage, and nutrient cycling.
- Participatory farmer-led testing: smallholders' preferences and adoption patterns
- Literature review: forages and land restoration
- **CLEANED modeling**: environmental co-benefits
- Suitability mapping: scaling potential
- Multi-stakeholder engagement: validation and scaling

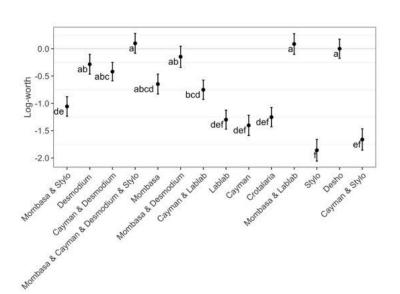
An Notenbaert¹, Kalkidan Mulatu¹, Shimelis Raji², Bimrew Asmare³, Caroline Brophy⁴, Peter Dorsch⁵, Niklas Wickander⁵, Wuletawu Abera¹, Mohammed Ebrahim¹, Solomon Mwendia¹, Marit Jorgensen⁶

¹Alliance of Bioversity International and CIAT, ²Hawassa University, 3Bahir Dar University, ⁴Trinity Colleage Dublin, ⁵Norwegian University of Life Sciences, ⁶NIBIO -Norwegian Institute of Bioeconomy Research



Norwegian Universit of Life Sciences

ETHIOPIAGRASS Cultivating Perennial grassland mixtures: a novel approach to forage and food production, land restoration and climate resilience in Ethiopia


Several grass-legume mixtures were identified as more productive and multipurpose than monocultures

An indication of positive legacy effects on soil health and subsequent food crops is observed.

They were also well-received by livestock keepers.

The replacement of 50% of collected fodder by the grass-legume mixtures increased feed value and consequently decreased GHG emission intensity and water and land footprints.

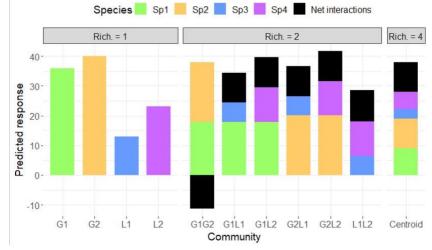
The suitability of the grass-legume mixes is likely to change only marginally under climate change.

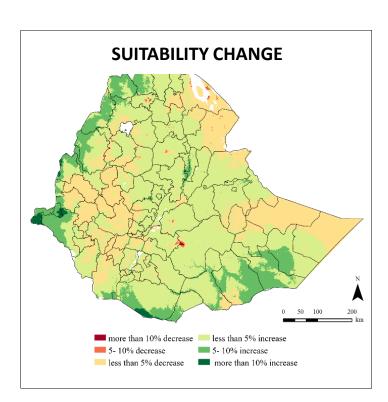
On-station trial (simplex design): Mixing legumes and grass gave significantly more yields than would be expected from the yields of monocultures

FOC	TPRINT FOR ONE LOCAL
Lan	d requirement
Toto	al land required (ha/year)
Toto	al land required (ha/MT Fi
N be	alance
kg N	I/ kg FPCM
% aı	rea mining
GHC	6 emissions
kg (CO2 eq. /kg FPCM
kg (CO2 eq. /kg protein
Wa	ter impact
m3/	′kg FPCM
m3/	′kg protein
	f precipitation used for fe

Suitability mapping: Large areas of Ethiopia are projected to remain highly suitable for the preferred grasslegume mixtures

- Synthesis.
- Outreach and dissemination


We thank the Norwegian Research Council for their funding support to this project


Farmer-led testing:

Farmers prefer *Panicum* grass mixed with Lablab, and Panicum-Brachiaria grass mixed with *Desmodium* and *Vetch* or *Stylosanthes*.

DAIRY COW	Baseline	+Mixtures	% change
	0.217	0.190	-12%
CM)	0.555	0.443	-20%
	-0.495	-0.418	-16%
	100%	90%	-10%
	3.99	3.27	-18%
	124.55	102.10	-18%
	0.51	0.43	-16%
	16.08		-16%
ed production	84.3	88.6	5%

Environmental footprints: A range of environmental cobenefits are associated with including the mixtures in feed baskets

Next steps

• Out-scaling environmental assessment

• Cost-benefit analysis.