Hanna Silvennoinen
Research Scientist
Authors
Shaoqiang Ni Xiao Huang Weixiu Gan Conrad Zorn Yuchen Xiao Guorui Huang Chaoqing Yu Jifu Cao Jie Zhang Zhao Feng Le Yu Guanghui Lin Hanna SilvennoinenAbstract
Land-sea riverine carbon transfer (LSRCT) is one of the key processes in the global carbon cycle. Although natural factors (e.g. climate, soil) influence LSRCT, human water management strategies have also been identified as a critical component. However, few systematic approaches quantifying the contribution of coupled natural and anthropogenic factors on LSRCT have been published. This study presents an integrated framework coupling hydrological modeling, field sampling and stable isotope analysis for the quantitative assessment of the impact of human water management practices (e.g. irrigation, dam construction) on LSRCT under different hydrological conditions. By applying this approach to the case study of the Nandu River, China, we find that carbon (C) concentrations originating from different land-uses (e.g. forest, cropland) are relatively stable and outlet C variations are mainly dominated by controlled runoff volumes rather than by input C concentrations. These results indicate that human water management practices are responsible for a reduction of ∼60% of riverine C at seasonal timescales, with an even greater reduction during drought conditions. Annual C discharges have been significantly reduced (e.g. 77 ± 5% in 2015 and 39 ± 11% in 2016) due to changes in human water extraction coupled with climate variation. In addition, isotope analysis also shows that C fluxes influenced by human activities (e.g. agriculture, aquaculture) could contribute the dominant particulate organic carbon under typical climatic conditions, as well as drought conditions. This research demonstrates the substantial effect that human water management practices have on the seasonal and annual fluxes of LSRCT, especially in such small basins. This work also shows the applicability of this integrated approach, using multiple tools to quantify the contribution of coupled anthropogenic and natural factors on LSRCT, and the general framework is believed to be feasible with limited modifications for larger basins in future research.
Authors
Anna M. Basinska Monika K. Reczuga Maciej Gabka Marcin Strozecki Dominika Lucow Mateusz Samson Marek Urbaniak Jacek Lesny Bogdan H. Chojnicki Daniel Gilbert Tadeusz Sobczynski Janusz Olejnik Hanna Silvennoinen Radoslaw Juszczak Mariusz LamentowiczAbstract
Due to their unique flora, hydrology and environmental characteristics, peatlands are precious and specific habitats for microorganisms and microscopic animals. Their microbial network structure and their biomass are crucial for peatland carbon cycling, through primary production, as well as decomposition and mineralization of organic matter. Wetlands are one of the ecosystems most at risk from anthropogenic activities and climate change. Most recent scenarios of climate change for Central Europe predict an increase in air temperature and a decrease in annual precipitation. These changes may disturb the biodiversity of aquatic organisms, and the peat carbon sink. Considering the above climatic scenarios, we aimed to: i) assess the response of microbial community biomass to warming and reduced precipitation through the lens of a manipulative experiment in a peatland ecosystem ii) predict how global warming might affect microbial biodiversity on peatlands exposed to warmer temperatures and decreased precipitation conditions. Additionally, we wanted to identify ecological indicators of warming among microorganisms living in Sphagnum peatland. The result of a manipulative experiment carried out at Rzecin peatland (W Poland) suggested that the strongest reduction in microbial biomass was observed in heated plots and plots where heating was combined with a reduction of precipitation. The most pronounced changes were observed in the case of the very abundant mixotrophic testate amoeba Hyalosphenia papilio and cyanobacteria. Shifts in the Sphagnum microbial network can be used as an early warning indicator of peatland warming, especially a decrease in the biomass of important phototrophic microbes living on the Sphagnum capitula, e.g. Hyalosphenia papilio.
Authors
Xiao Huang Mats Höglind Akanegbu Justice Knut Bjørkelo Torben Christensen Kjetil Fadnes Teresa G. Bárcena Per-Erik Jansson Åsa Kasimir Bjørn Kløve Anders Lyngstad Mikhail Mastepanov Hannu Marttila Marcel Van Oijen Ina Pohle Jagadeesh Yeluripati Hanna SilvennoinenAbstract
Cultivated organic soils account for ~7% of Norway’s agricultural land area, and they are estimated to be a significant source of greenhouse gas (GHG) emissions. The project ‘Climate smart management practices on Norwegian organic soils’ (MYR), commissioned by the Research Council of Norway (decision no. 281109), aims to evaluate GHG (e.g. carbon dioxide, methane and nitrous oxide) emissions and impacts on biomass productivity from three land use types (cultivated, abandoned and restored) on organic soils. At the cultivated sites, impacts of drainage depth and management intensity will be measured. We established experimental sites in Norway covering a broad range of climate and management regimes, which will produce observational data in high spatiotemporal resolution during 2019-2022. Using state-of-the-art modelling techniques, MYR aims to predict the potential GHG mitigation under different scenarios (e.g. different water table depth, management practices and climate pattern). Four models (BASGRA, DNDC, Coup and ECOSSE) will be further developed according to the physical/chemical properties of peat soil and then used independently in simulating biogeochemical processes and biomass dynamics in the different land uses. Robust parameterization schemes for each model to improve the predictive accuracy will be derived from a new dataset collected from multiple experimental sites in the Nordic region. Thereafter, the models will be used in the regional simulation to present the spatial heterogeneity in large scale. Eventually, a multi-model ensemble prediction will be carried out to provide scenario analyses by 2030 and 2050. By integrating experimental results and modelling, the project aims at generating useful information for recommendations on environment-friendly use of Norwegian peatlands.
Authors
Xiao Huang Chaoqing Yu Tongbi Tu Shaoqiang Ni ShengChao Qiao Jim W Hall Mats Höglind Hanna SilvennoinenAbstract
In the past decade, China imported massive quantities of soybean from the international market to meet its increasing domestic demand for protein[1]. However, China’s soybean imports from US decreased from 32.86 Mt (Million tons, 34% of the total 95.54 Mt) in 2017 to 16.64 Mt (19% of the total 88.03 Mt) in 2018[2] due to the China-US trade war. To reduce China’s reliance on imports, the Chinese government has been making policy incentive, e.g. higher subsidies, to encourage farmers for soybean cultivation. Traditionally Northeast China is the key production area for soybean. Soybean cultivation is tightly linked to the regional climate and environment. On the one hand, the local soybean growth is vulnerable[3] to the frequent meteorological hazards (e.g. droughts, floods) in the Northeast China[4]. The meteorological risks for soybean production in this area still remain unknown. On the other hand, albeit with relatively high production cost[5] and low water use efficiency[6], the local soybean cultivation is expected to effectively improve the nitrogen use efficiency and therefore alleviate the growing environment pollutions in this region[7]. Yet so far there are few quantitative research being reported on this environmental issue. Our research aims to explore both the meteorological risks and environmental costs of the policy-driven soybean expansion. We have developed a new version of the soybean growth algorithms within the DNDC (DeNitrification-DeComposition) model including nitrogen biogeochemical processes and performed regional simulations for soybean-related cropping systems in Northeast China. We will present the following results by combining model outputs and observations: (i) potential yield and the meteorological risks of soybean cultivation; (ii) fertilizer reduction in different crop rotation systems and the corresponding benefits to water ecosystem; and (iii) consequences of different policy scenarios (e.g. change in subsidy, GMO permission) to soybean production and environment.
Authors
Christophe Moni Hanna Silvennoinen Bruce A. Kimball Erling Fjelldal Marius Brenden Ingunn Burud Andreas Svarstad Flø Daniel RasseAbstract
Background: Global warming is going to affect both agricultural production and carbon storage in soil worldwide. Given the complexity of the soil-plant-atmosphere continuum, in situ experiments of climate warming are necessary to predict responses of plants and emissions of greenhouse gases (GHG) from soils. Arrays of infrared (IR) heaters have been successfully applied in temperate and tropical agro-ecosystems to produce uniform and large increases in canopy surface temperature across research plots. Because this method had not yet been tested in the Arctic where consequences of global warming on GHG emission are expected to be largest, the objective of this work was to test hexagonal arrays of IR heaters to simulate a homogenous 3 °C warming of the surface, i.e. canopy and visible bare soil, of five 10.5-m2 plots in an Arctic meadow of northern Norway. Results: Our results show that the IR warming setup was able to simulate quite accurately the target + 3 °C, thereby enabling us to simulate the extension of the growing season. Meadow yield increased under warming but only through the lengthening of the growing season. Our research also suggests that, when investigating agricultural systems on the Arctic, it is important to start the warming after the vegetation is established,. Indeed, differential emergence of meadow plants impaired the homogeneity of the warming with patches of bare soil being up to 9.5 °C warmer than patches of vegetation. This created a pattern of soil crusting, which further induced spatial heterogeneity of the vegetation. However, in the Arctic these conditions are rather rare as the soil exposed by snow melt is often covered by a layer of senescent vegetation which shelters the soil from direct radiation. Conclusions: Consistent continuous warming can be obtained on average with IR systems in an Arctic meadow, but homogenous spatial distribution requires that the warming must start after canopy closure.
Authors
Xiao Huang Höglind Mats Knut Bjørkelo Torben Christensen Kjetil Fadnes Teresa G. Bárcena Åsa Kasimir Leif Klemedtsson Bjørn Kløve Anders Lyngstad Mikhail Mastepanov Hannu Marttila Marcel van Oijen Peter Petros Ina Pohle Jagadeesh Yeluripati Hanna SilvennoinenAbstract
Cultivated organic soils account for ∼7% of Norway’s agricultural land area, and they are estimated to be a significant source of greenhouse gas (GHG) emissions. The project ‘Climate smart management practices on Norwegian organic soils’ (MYR), commissioned by the Research Council of Norway (decision no. 281109), aims to evaluate GHG (e.g. carbon dioxide, methane and nitrous oxide) emissions and impacts on biomass productivity from three land use types (cultivated, abandoned and restored) on organic soils. At the cultivated sites, impacts of drainage depth and management intensity will be measured. We established experimental sites in Norway covering a broad range of climate and management regimes, which will produce observational data in high spatiotemporal resolution during 2019-2021. Using state-of-the-art modelling techniques, MYR aims to predict the potential GHG mitigation under different scenarios. Four models (BASGRA, DNDC, Coup and ECOSSE) will be further developed according to the soil properties, and then used independently in simulating biogeochemical processes and biomass dynamics in the different land uses. Robust parameterization schemes for each model will be based in the observational data from the project for both soil and crop combinations. Eventually, a multi-model ensemble prediction will be carried out to provide scenario analyses by 2030 and 2050. By integrating experimental results and modelling, the project aims at generating useful information for recommendations on environment-friendly use of Norwegian peatlands.
Authors
Xiao Huang Mats Höglind Knut Bjørkelo Torben Christensen Kjetil Fadnes Teresa G. Bárcena Åsa Kasimir Leif Klemedtsson Bjørn Kløve Anders Lyngstad Mikhail Mastepanov Hannu Marttila Marcel Van Oijen Peter Petros Ina Pohle Jagadeesh Yeluripati Hanna SilvennoinenAbstract
Cultivated organic soils (7-8% of Norway’s agricultural land area) are economically important sources for forage production in some regions in Norway, but they are also ‘hot spots’ for greenhouse gas (GHG) emissions. The project ‘Climate smart management practices on Norwegian organic soils’ (MYR; funded by the Research Council of Norway, decision no. 281109) will evaluate how water table management and the intensity of other management practices (i.e. tillage and fertilization intensity) affects both GHG emissions and forage’s quality & production. The overall aim of MYR is to generate useful information for recommendations on climate-friendly management of Norwegian peatlands for both policy makers and farmers. For this project, we established two experimental sites on Norwegian peatlands for grass cultivation, of which one in Northern (subarctic, continental climate) and another in Southern (temperate, coastal climate) Norway. Both sites have a water table level (WTL) gradient ranging from low to high. In order to explore the effects of management practices, controlled trials with different fertilization strategies and tillage intensity will be conducted at these sites with WTL gradients considered. Meanwhile, GHG emissions (including carbon dioxide, methane and nitrous oxide), crop-related observations (e.g. phenology, production), and hydrological conditions (e.g. soil moisture, WTL dynamics) will be monitored with high spatiotemporal resolution along the WTL gradients during 2019-2021. Besides, MYR aims at predicting potential GHG mitigation under different scenarios by using state-of-the-art modelling techniques. Four models (BASGRA, Coup, DNDC and ECOSSE), with strengths in predicting grass growth, hydrological processes, soil nitrification-denitrification and carbon decomposition, respectively, will be further developed according to the soil properties. Then these models will be used independently to simulate biogeochemical and agroecological processes in our experimental fields. Robust parameterization schemes will be based on the observational data for both soil and crop combinations. Eventually, a multi-model ensemble prediction will be carried out to provide scenario analyses by 2030 and 2050. We will couple these process-based models with optimization algorithm to explore the potential reduction in GHG emissions with consideration of production sustenance, and upscale our assessment to regional level.
Abstract
It is important to quantify carbon decomposition to assess the reforestation impact on the forest floor C stocks. Estimating the loss of C stock in a short-term perspective requires measuring changes in soil respiration. This is not trivial due to the contribution of both soil microbes and vegetation to the measured CO2 flux. However, C stable isotopes can be used to partition the respiration and potentially to assess how much of the recalcitrant C stock in the forest floor is lost. Here, we measured the soil respiration at two forest sites where different regeneration methods were applied, along with an intact forest soil for reference. In so doing, we used a closed dynamic chamber for measuring respiration and the 13C composition of the emitted CO2. The chamber measurements were then supplemented with the soil organic carbon analysis and its δ13C content. The mean δ13C-CO2 estimates for the source of the CO2 were -26.4, -27.9 and -29.5‰, for the forest, unploughed and ploughed, respectively. The 13C of the soil organic carbon did, not differ significantly between sites. The higher soil respiration rate at the forest, as compared to the unploughed site, could be attributed to the autotrophic respiration by the forest floor vegetation.
Authors
Marian Pavelka Manuel Acosta Ralf Kiese Núria Altimir Christian Brümmer Patrick Crill Eva Darenova Roland Fuß Bert Gielen Alexander Graf Leif Klemedtsson Annalea Lohila Bernhard Longdoz Anders Lindroth Mats Nilsson Sara Maraňón Jiménez Lutz Merbold Leonardo Montagnani Matthias Peichl Mari Pihlatie Jukka Pumpanen Penelope Serrano Ortiz Hanna Silvennoinen Ute Skiba Patrik Vestin Per Weslien Dalibor Janous Werner KutschAbstract
Chamber measurements of trace gas fluxes between the land surface and the atmosphere have been conducted for almost a century. Different chamber techniques, including static and dynamic, have been used with varying degrees of success in estimating greenhouse gases (CO2, CH4, N2O) fluxes. However, all of these have certain disadvantages which have either prevented them from providing an adequate estimate of greenhouse gas exchange or restricted them to be used under limited conditions. Generally, chamber methods are relatively low in cost and simple to operate. In combination with the appropriate sample allocations, chamber methods are adaptable for a wide variety of studies from local to global spatial scales, and they are particularly well suited for in situ and laboratory-based studies. Consequently, chamber measurements will play an important role in the portfolio of the Pan-European long-term research infrastructure Integrated Carbon Observation System. The respective working group of the Integrated Carbon Observation System Ecosystem Monitoring Station Assembly has decided to ascertain standards and quality checks for automated and manual chamber systems instead of defining one or several standard systems provided by commercial manufacturers in order to define minimum requirements for chamber measurements. The defined requirements and recommendations related to chamber measurements are described here.
Authors
Daniela Franz Manuel Acosta Nuria Altimir Nicola Arriga Dominique Arrouays Marc Aubinet Mika Aurela Edward Ayres Ana López-Ballesteros Mireille Barbaste Daniel Berveiller Sébastien Biraud Hakima Boukir Timothy Brown Christian Brümmer Nina Buchmann George Burba Arnaud Carrara Allessandro Cescatti Eric Ceschia Robert Clement Edoardo Cremonese Patrick Crill Eva Darenova Sigrid Dengel Petra D'Odorico Gianluca Filippa Stefan Fleck Gerardo Fratini Roland Fuß Bert Gielen Sébastien Gogo John Grace Alexander Graf Achim Grelle Patrick Gross Thomas Grünwald Sami Haapanala Markus Hehn Bernard Heinesch Jouni Heiskanen Mathias Herbst Christine Herschlein Lukas Hörtnagl Koen Hufkens Andreas Ibrom Claudy Jolivet Lilian Joly Michael Jones Ralf Kiese Leif Klemedtsson Natascha Kljun Katja Klumpp Pasi Kolari Olaf Kolle Andrew Kowalski Werner Kutsch Tuomas Laurila Anne de Ligne Sune Linder Anders Lindroth Annalea Lohila Bernhard Longdoz Ivan Mammarella Tanguy Manise Sara Maraňón Jiménez Giorgio Matteucci Matthias Mauder Philip Meier Lutz Merbold Simone Mereu Stefan Metzger Mirco Migliavacca Meelis Mölder Leonardo Montagnani Christine Moureaux David Nelson Eiko Nemitz Giacomo Nicolini Mats B. Nilsson Maarten op de Beeck Bruce Osborne Mikaell Ottosson Löfvenius Marian Pavelka Matthias Peichl Olli Peltola Mari Pihlatie Andrea Pitacco Radek Pokorny Jukka Pumpanen Céline Ratié Corinna Rebmann Marilyn Roland Simone Sabbatini Nicolas P.A. Saby Matthew Saunders Hans Peter Schmid Marion Schrumpf Pavel Sedlák Penelope Serrano Ortiz Lukas Siebicke Ladislav Šigut Hanna Silvennoinen Guillaume Simioni Ute Skiba Oliver Sonnentag Kamel Soudani Patrice Soulé Rainer Steinbrecher Tiphaine Tallec Anne Thimonier Eeva-Stiina Tuittila Juha-Pekka Tuovinen Patrik Vestin Gaëlle Vincent Caroline Vincke Domenico Vitale Peter Waldner Per Weslien Lisa Wingate Georg Wohlfahrt Mark Zahniser Timo VesalaAbstract
Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
Abstract
No abstract has been registered
Authors
Hanna Silvennoinen Teresa G. Bárcena Christophe Moni Marcin Szychowski Paulina Rajewicz Daniel RasseAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Extensive draining at tropical ombrotrophic peatlands in Southeast Asia has made these landscapes a global ‘hot spots’ for greenhouse gas emissions. Management practices and fires have changed substrate status, which affects microbial processes. Here, we present data on how change in management practices affect carbon (C) mineralization processes at these soils. We compared the C mineralization potentials of undrained swamp forest peat to those of abandoned peat (deforested, drained and burned peatlands in degraded condition) at various depths, with and without additional substrates (glucose, glutamate and nitrate), under oxic and anoxic conditions through ex situ experiments. Carbon mineralization (CO2 and CH4 production) rates were higher in the forest peat, with higher litter deposition and C availability. Production rates decreased with peat depth coinciding with decreasing availability of labile C. Consequently, the increase in production rates after labile substrate addition was relatively modest in forest peat as compared to the abandoned site and from the top layers as compared to deeper layers. Methanogenesis had little importance in total C loss. Adding labile C and nitrogen (N) enhanced heterotrophic CO2 production more than only addition of N. Surprisingly, oxygen availability did not limit CO2 production rates, but anoxic respiration also yielded substantial rates, especially at the forest peat. Flooding of these sites will therefore reduce, but not completely cease, peat C-loss. Reintroduced vegetation and fertilization in abandoned peatlands can enrich the peat with labile C and N compounds and thus lead to increased microbiological activity.
Abstract
The water management system of cultivated paddy rice soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential. The ob- jectives of this study were to i) assess the influence of water management history on GHG production and microbial community structure, ii) relate GHG production to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil condi- tioning procedures on GHG production was determined. To reach these aims, we compared four soils with different water management history, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG production: drying and sieving induced the highest production rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. The water management history strongly affected microbial community structure, which was itself tightly linked to CH4 and N2O production. N2O production was the highest in aerobic soil, which also exhibited the strongest evidence for active nitrifying communities (NirK). Drying and rewetting aerobic soil enhanced the production of nitrate, which was further reduced to N2O through denitrification. As expected, CH4 production was the lowest in aerobic soil, which showed a less abundant archaeal com- munity. This work supports the hypothesis that microbial communities in paddy soils progressively adapt to water management practices, thereby reinforcing potential differences in GHGs production.
Authors
Marcin Stróz ̇ecki Mateusz Samson Bogdan Chojnicki Jacek Leśny Christophe Moni Marek Urbaniak Janusz Olejnik Radoslaw Juszczak Hanna SilvennoinenAbstract
No abstract has been registered
Authors
Anna Maria Basinska Monika Katarzyna Reczuga Maciej Gabka Radoslaw Juszczak Bogdan Chojnicki Hanna Silvennoinen Tadeusz Sobczyński Jacek Leśny Marek Urbaniak D Gilbert Mariusz LamentowiczAbstract
No abstract has been registered
Authors
Radoslaw Juszczak Bogdan Chojnicki Marek Urbaniak Jacek Leśny Hanna Silvennoinen Mariusz Lamentowicz Anna Maria Basinska Maciej Gabka Marcin Stróz ̇ecki Mateusz Samson Dominika Łuców Damian Józefczyk Mathias Hoffmann Janusz OlejnikAbstract
No abstract has been registered
Authors
Anna Maria Basinska Monika Katarzyna Reczuga Maciej Gabka Radoslaw Juszczak Bogdan Chojnicki Marek Urbaniak Hanna Silvennoinen Tadeusz Sobczyński Jacek Leśny D Gilbert Mariusz LamentowiczAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Alessandra Lagomarsino Bruce Linquist Arlene Adviento-Borbe Rossana Monica Ferrara Roberta Pastorelli Grazia Pallara Daniel Rasse Hanna SilvennoinenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Magnus Lund Jarle W. Bjerke Bert G. Drake Ola Engelsen Georg Heinrich Hansen Frans-Jan W. Parmentier Thomas Powell Hanna Silvennoinen Matteo Sottocornola Hans Tømmervik Simon Weldon Daniel RasseAbstract
Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation andCsink functioning. This study presents a 4.5 year record of land– atmosphere carbon dioxide (CO2) exchange from the Andøya blanket bog in northern Norway. Compared with other peatlands, the Andøya peatland exhibited low flux rates, related to the low productivity of the dominating moss and lichen communities and the maritime settings that attenuated seasonal temperature variations. It was observed that under periods of high vapour pressure deficit, net ecosystem exchange was reduced, which was mainly caused by a decrease in gross primary production. However, no persistent effects of dry conditions on theCO2 exchange dynamics were observed, indicating that under present conditions and within the range of observed meteorological conditions the Andøya blanket bog retained its Cuptake function. Continued monitoring of these ecosystem types is essential in order to detect possible effects of a changing climate. peatland, carbon, blanket bog, eddy covariance, climate change, net ecosystem exchange
Authors
Anna Maria Basinska Maciej Gabka Radoslaw Juszczak Bogdan Chojnicki Marek Urbaniak Hanna Silvennoinen Tadeusz Sobczyński Jacek Leśny Mariusz LamentowiczAbstract
No abstract has been registered
Authors
Alessandra Lagomarsino Alessandroelio Agnelli Roberta Pastorelli Grazia Pallara Daniel Rasse Hanna SilvennoinenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Hanna SilvennoinenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Hanna Silvennoinen Adam O´Toole Katrin Knoth de Zarruk Monique Carnol Peter Dörsch Daniel RasseAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered